
Technical University of Denmark

PhD Thesis

Strong Interaction Between the Light Field and an

Ultra-Coherent Mechanical Oscillator

By
Daniel Allepuz Requena

Supervised by
Professor Ulrik Lund Andersen

Associate Professor Alexander Huck
Dr. Ulrich Busk Hoff

August 2024



2

A thesis submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy at the Technical University of Denmark.

Author:
Daniel Allepuz Requena

Supervisors:
Professor Ulrik Lund Andersen

Associate Professor Alexander Huck
Dr. Ulrich Busk Hoff

Period:
September 2021 – August 2024

Work done in the Center for Macroscopic Quantum States (bigQ) in the
Department of Physics of the Technical University of Denmark.

Version 9
Updates and errata are available at: www.dallepuz.xyz/thesis

www.dallepuz.xyz/thesis


3

Abstract

The search for quantum phenomena in macroscopic objects has accelerated in the past
decade. Precise experiments that strongly measure large objects can shed light into the mea-
surement problem and help study the dynamics of open quantum systems. Engineered ultra-
coherent mechanical resonators with low-masses but micrometer dimensions are at the fore-
front of this endeavor. Due to the plethora of systems that can couple to mechanical motion,
low dissipation resonators can also be used as transducers of quantum information or as long-
lived quantum memories.

The advances in ultra-low dissipation rate mechanical resonators have allowed the obser-
vation of true quantum effects at room-temperature. Experiments that were previously only
possible at cryogenic temperatures have started to translate to room temperature. Light, with
its persistent quantum nature, is the tool that allows measurement and control at the needed
precision.

In this work, we have designed and implemented a 126µm-long optical micro-cavity to
enhance the interaction of light with a mechanical resonator placed in its center. We have fabri-
cated mirrors that are shielded from vibrations. Using phononic crystal patterns, we have sup-
pressed the motion of the mirrors’ surface in a frequency span between 1MHz and 1.5MHz. The
motion of the mirror at these frequencies is measured to be at least three orders of magnitude
smaller than outside the region. The cavity is specifically designed to house our mechanical
resonator, a silicon-nitride membrane. Our system is passively aligned and it allows the cav-
ity to exceed 60000 finesse when loaded with the membrane, all while keeping the resonator’s
quality factor intact, which is close to 108.

Our room-temperature system is capable of reaching quantum cooperativities around 0.32,
where values above 1 indicate that the system is dominated by quantum fluctuations. In theory,
this interaction strength cools our oscillator to an occupation of 32 phonons, equivalent to a
temperature of 1.4mK.

We identify laser phase noise as the limiting factor of our setup. Without it, we predict that
our platform will be able to prepare the resonator in its ground state through feedback cool-
ing. Furthermore, we expect a reduction of the fluctuations of light below vacuum fluctuations
through optomechanical squeezing.
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Dansk Resumé

Søgningen efter kvantefænomener i makroskopiske objekter er accelereret i det seneste årti.
Præcise eksperimenter, der kraftigt måler store objekter, kan kaste lys over måleproblemet
og hjælpe med at studere dynamikken i åbne kvantesystemer. Konstruerede ultrakohærente
mekaniske resonatorer med lav masse, men mikrometer-dimensioner, står i spidsen for denne
bestræbelse. På grund af de mange systemer, der kan kobles til mekanisk bevægelse, kan res-
onatorer med lav dissipation bruges som transducere af kvanteinformation eller som langtid-
sholdbare kvantehukommelser.

Fremskridtene inden for mekaniske resonatorer med ultra-lav dissipation har gjort det muligt
at observere ægte kvanteeffekter ved stuetemperatur. I det seneste år er forberedelsen af kvan-
tetilstande ved kryogene temperaturer overgået til eksperimenter ved stuetemperatur. Lys
er med sin kvantekarakter det værktøj, der gør det muligt at måle og kontrollere med den
nødvendige præcision.

I dette arbejde har vi designet og implementeret en optisk mikrokavitet for at forbedre lysets
interaktion med en mekanisk resonator placeret i midten af den. Vi har fremstillet spejle,
der er afskærmet fra vibrationer. Ved hjælp af fononiske krystalmønstre har vi undertrykt
bevægelsen af spejlenes overflade i et frekvensområde mellem 1 MHz og 1.5 MHz. Spejlets
bevægelse ved disse frekvenser er målt til at være mindst tre størrelsesordener mindre end
uden for området. Kaviteten er specielt designet til at rumme vores mekaniske resonator, en
membran af siliciumnitrid. Vores system er passivt flugtet, hvilket gør det muligt for systemet
at overskride 60000 finesser, når det belastes med membranen, samtidig med at resonatorens
kvalitetsfaktor tæet på 108 er intakt.

Vores system ved stuetemperatur er i stand til at nå kvantekooperativiteter omkring 0.32,
hvor værdier over 1 indikerer, at systemet er domineret af kvantefluktuationer. I teorien kan
denne interaktionsstyrke nedkøle vores oscillator til 32 fononer, hvilket svarer til en temperatur
på 1.4 mK.

Uden laserfasestøj forudsiger vi, at vores platform vil være i stand til at forberede res-
onatoren i dens grundtilstand gennem feedback-køling, samt reducere lysfluktuationerne un-
der vakuumfluktuationer gennem optomekanisk klemning.
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Chapter 1

Introduction

Quantum mechanics is not a theory of small things. Although the theory of quantum mechanics
is usually introduced as our best model for atoms, sub-atomic particles and light, none of its
principles talks about the extent or mass of the system. Quantum mechanics is a theory about
experiment outcomes, at least through the lens of the Copenhagen interpretation. It tells us
which measurements are possible and which are not, what are the possible outcomes of those
measurements, what probability we should assign to each outcome and how these probabilities
evolve over time. It does not tell us which experiments are governed by quantum mechanics
and which are not.

As good scientists, we should push a theory to its limits. Indeed, we struggle to make
quantum mechanics compatible with the high energy regime, when relativistic effects mani-
fest. Great feats have been accomplished along this research line, some of them are the merging
of quantum mechanics and special relativity [1], postulating the existence of quarks and the
strong force [2] and the unification of the weak interaction with electromagnetism [3, 4]. These
and other theoretical developments, forming the Standard Model, have been vindicated in large
scale experiments such as the Large Hadron Collider [5]. However, there are much simpler ex-
periments that can push quantum theory.

The majority of experiments that we hold as evidence for the laws of quantum mechanics,
such as the Stern-Gerlach experiment [6, 7], measure observables of single atoms or sub-atomic
particles. With the exception, of course, of key quantum optics experiments, such as tests of the
Bell inequality [8], which deal with more “classical” degrees of freedom such as polarization [9].
But how far can we push the idea of quantum mechanics describing every experiment? Will the
small angle of a pendulum be subject to quantum laws? What about the amplitude of the
collective motion of a tuning fork? In principle, these observables can be treated quantum
mechanically in the same manner as more traditionally “quantum” degrees of freedom, such as
spin.

Experiments point to a resounding yes. With enough precision, we ultimately need quantum
mechanics to model our observations, regardless of the system´s mass or size. The quantiza-
tion of mechanical motion was first observed in a micro drum at a temperature of 25mK [10].
What makes this observation extraordinary is the necessity to apply quantum theory to a single
degree of freedom that corresponds to the motion of thousands of atoms, even more strangely,
the same atoms participate in motion of other mechanical modes that do not manifest quan-
tum behavior. This experiment necessitated a qubit, which in turn requires superconductivity.
Nevertheless, similar results followed using optical-mechanical resonators, this time at much

9
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higher temperatures of 20K [11].

Observing such effects at room temperature is a bigger challenge. Due their low frequency
and consequent high thermal occupation, mechanical resonators are constantly moved by ran-
dom thermal forces. However, two systems at the same frequency and temperature can have
thermal forces of vastly different magnitude. This is due to thermal forces being proportional to
the resonator’s damping rate [12]. The fact that reducing the damping rate has a similar effect
to lowering the temperatures has launched a race to find resonators with ultra-low dissipation.
Two platforms show the most promise, optically-levitated nano-particles and engineered mem-
brane resonators. For example, a levitated nano-particle has been laser cooled to its ground
state starting from room-temperature [13], enabled in part by the high isolation from the
thermal bath in ultra high vacuum and by the low mass of the particle. In contrast, mem-
branes are larger, with areas as big as hundreds of micrometers and thicknesses of nanometers.
More than a decade of developments [14–17] have culminated in ultra-coherent membrane res-
onators with thermal dissipation rates significantly below their oscillation frequencies [18–21].
In other words, we can study resonators than can undergo multiple oscillations without absorb-
ing a single phonon from their environment.

Light is the only tool available to measure the motion of mechanical resonators at room
temperature. Any sort of electric coupling, such as the capacitive coupling in superconduc-
tive circuits, will require cryogenic temperatures in order to remove thermal noise. In contrast,
coherent light, emitted from a laser for example, does not carry thermal fluctuations at room-
temperature thanks to its high frequency. It is an almost noiseless probe that we can use to
interact with and measure our mechanical resonators. Interferometers, the devices that exploit
the wave-like nature of light to measure distances, have a stellar experimental record, from
Michelson and Morley disproving the existence of the luminiferous ether [22] to the first detec-
tion of gravitational waves by LIGO [23]. As all quantum measurements, measuring with light
is not free of consequence. Light contains fundamental quantum fluctuations, the shot noise,
which not only limit the signal-to-noise ratio of our measurement, but also couple to the object
that we are measuring through radiation pressure. The best measurement that we can do will
strike a balance between signal-to-noise ratio and back action on the object, in this situation,
we say that the measurement is at the Standard Quantum Limit [24].

Optical cavities, which recycle light in-between two highly reflective mirrors, are also in-
terferometers. They are extremely sensitive to changes of the effective distance between their
mirrors1. Cavities are not only measurement instruments, a cavity with a mechanically com-
pliant mirror (or with a thin, partially reflective membrane inside) exhibits a plethora of in-
teresting phenomena. Some examples are: laser cooling of the mechanical motion, mechanical
frequency shifts through the optical potential and reduction of the light’s quantum fluctuations
(squeezing) [25]. The field of cavity optomechanics has flourished in the past decade, examples
of its achievements are: ground-state cooling of a 1MHz resonator from 10K [26], the very re-
cent optomechanical squeezing at room temperature [27] and even more recent measurement
of mechanical asymmetry (a tell-tale of quantum behavior) at room temperature [28].

The main focus of this work has been to design a state of the art cavity optomechanical
system that addresses the main technical problems that impede reaching the quantum regime
at room-temperature. Motivated by our group’s development of ultra coherent membrane res-
onators [20], we have fabricated a low-noise micro-cavity that tightly integrates the membrane
substrate in its design. This is possible thanks to a reliable and tunable micromirror template
fabrication process.

1LIGO is in fact an interferometer where each arm is an optical cavity.
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1.1 Structure of the thesis

Following is a list describing how the chapters of this thesis are organized.

• In Chapter 2, the theory of cavity optomechanics is introduced. We start by describing the
open quantum harmonic oscillator using the Langevin equation. We use the same formal-
ism to describe the optical cavity. We derive the source of optomechanical interaction in
a cavity, in particular, the configuration of a semi-reflective membrane placed in-between
its mirrors. We then proceed with a dynamical model of the joint mechanical and opti-
cal mode. Finalizing with the derivation of models for different detection schemes while
including classical phase noise.

• In Chapter 3, we describe the experiment that we have designed. We motivate the deci-
sions made and go into great detail about the geometry of the cavity, as well as how it is
actually implemented on the optical table. We also demonstrate the performance of our
low-noise mirrors. Details about the vacuum set-up for Appendix E.

• In Chapter 4 we describe the fabrication of concave micromirror templates through feed-
back controlled laser ablation.

• In Chapter 5, we measure the relevant figures of merit for optomechanical interaction.
We detail the issues we encountered when characterizing an optomechanical system with
large interaction. We also include a characterization of our lasers phase noise, and shown
that it is quantum limited in amplitude.

• In Chapter 6, we illustrate some of the challenges present in our set-up that prevents us
from reaching the quantum dominated regime. This includes problems of a technical
nature, such as the membrane rupturing, or laser phase noise, as well as thermal inter-
modulation noise, an effect not considered in our linear theory developed in Chapter 2.

• In Chapter 7, we summarize our findings and discuss the next steps of our experiment.
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Chapter 2

The theory of optomechanical
interaction

2.1 Introduction

Optomechanics is the study of systems where light and compliant mechanical objects interact.
Optomechanical interaction is a consequence of Maxwell’s equations, appearing in the form
of radiation pressure. Electromagnetic waves carry momentum and exert forces at interfaces
between media, as well as while propagating in them1. Note that this interaction does not arise
from the quantization of the electromagnetic field. Nevertheless, the classical prediction of
radiation pressure is identical to the quantum picture of single photons carrying momentum
equal to h

λ
2.

We aim to use optomechanical interaction to reveal the quantum nature of mechanical mo-
tion, either by observation of quantized degrees of freedom, or by interacting with light with
quantum coherence. Optomechanics is well suited for this task because light easily exhibits
quantum behavior, even at room-temperature. Due to its high frequency, its thermal occupa-
tion is virtually zero. We can consider light to be ”cold”: all its observed randomness is due to
quantum fluctuations. The same cannot be said for macroscopic objects oscillating at frequen-
cies around a megahertz.

In this chapter, we first summarize the quantum model of the mechanical harmonic oscilla-
tor. It will become apparent that the quantum effects of optomechanical interaction are weak
compared to classical thermal effects. We will then summarize the theory of optical cavities,
they allow us to strengthen the interaction through the build-up of power and repeated reflec-
tions. Finally, I will introduce a fully quantum model of cavity optomechanical interaction,
including key non-idealities present in room-temperature experiments.

1Surprisingly, there is still some controversy in the nature of radiation pressure inside a medium, see the work by
[29] and [30]

2The force in Newton exerted by light on a perfectly reflecting object from a Maxwell’s perspective is F = 2·(Power)
c .

From a semi-classical perspective: F = 2 · (Photon rate) · hλ , once we make the connection that (Photon rate) = (Power)
hν ,

both expressions are identical.

13



14 CHAPTER 2. THE THEORY OF OPTOMECHANICAL INTERACTION

2.2 The harmonic oscillator

A harmonic oscillator is a physical system equivalent to a particle with mass m subject to a
potential quadratic in position:

V (q) =
1
2
kq2, (2.1)

with q being the position of the particle and k being the spring constant, which is the propor-
tionality constant between displacement from equilibrium and restoring force. The dynamics
of the harmonic oscillator are determined by its total energy:

H =
1

2m
p2 +

1
2
kq2, (2.2)

where p =mq̇ is the momentum of the particle. Solving the system using Hamilton’s equations,
it is found to oscillate at a characteristic angular frequency:

Ωm =

√
k
m
. (2.3)

The standard first quantization procedure can be used to obtain the Hamiltonian in the context
of quantum mechanics. This procedure can be found in any quantum mechanics textbook [31].
Variables q and p are taken to be Hermitian operators q̂ and p̂ representing position and mo-
mentum observables. Being conjugate coordinates, they must fulfill the following commutation
rule:

q̂p̂ − p̂q̂ = [q̂, p̂] = iℏ. (2.4)

The total energy becomes the Hamiltonian operator:

Ĥ =
1

2m
p̂2 +

1
2
mΩ2

mq̂
2, (2.5)

where k =mΩ2
m has been used. The eigen-states and eigen-values in the q basis are found using

p̂ = −iℏ ∂
∂q and solving the resulting differential equation. The spectrum of eigen-energies is:

En = ℏΩm

(
n+

1
2

)
n = 0,1,2, ... (2.6)

The excitation number n is the phonon number. The behavior of the spectrum motivates the
definition of a phonon-number basis:

|n⟩ n = 0,1,2, ... (2.7)

which are usually called Fock or number states. They are eigen-states of the number operator:

n̂ =
1

ℏΩm
Ĥ − 1

2
= b̂†b̂, (2.8)

where b̂ is the annihilation operator and b̂† is the creation operator, these are non-Hermitian
operators that act on Fock states in the following way:

b̂ |n⟩ =
√
n |n− 1⟩ (2.9)

b̂† |n⟩ =
√
n+ 1 |n+ 1⟩ . (2.10)
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These are related to the q̂ and p̂ operators by the following identities:

b̂ =

√
mΩm

2ℏ

(
q̂+

i
mΩm

p̂

)
(2.11)

b̂† =

√
mΩm

2ℏ

(
q̂ − i

mΩm
p̂

)
. (2.12)

A key phenomena arising from quantization is the presence of intrinsic fluctuation in position
measurements, even when the system is found at its lowest-energy state—the ground-state:

x2
z.p. = ⟨0| q̂2 |0⟩ − ⟨0| q̂ |0⟩2 =

ℏ
2mΩm

. (2.13)

These are known as zero-point fluctuations. Momentum measurements will also exhibit zero-
point fluctuations:

p2
z.p. = ⟨0| p̂2 |0⟩ − ⟨0| p̂ |0⟩2 =

ℏmΩm

2
. (2.14)

These characteristic quantities can be used to define dimensionless position and momentum
operators Q̂ and P̂ :

Q̂ =
1
√

2

q̂

xz.p.
=

1
√

2

(
b̂† + b̂

)
, (2.15)

P̂ =
1
√

2

p̂

pz.p.
=

i
√

2

(
b̂† − b̂

)
. (2.16)

2.2.1 The open harmonic oscillator

The majority of harmonic oscillators that we can study experimentally are coupled to their en-
vironment, specially mechanical oscillators. A constant exchange of energy between the system
of interest and its surroundings manifests itself as both heating and dissipation. The classical
statistical physics approach will satisfactorily describe the oscillator at high temperatures but
will fail at lower temperatures. At high temperatures, the thermal fluctuation of the coordinate
q according to the equipartition theorem is [32]:〈

q2
〉

=
kBT

mΩ2
m
, (2.17)

where kB is the Boltzmann constant and T is the temperature of the surrounding environment,
which is taken as a thermal bath. The classical approach clearly breaks down at low temper-
atures as it does not predict the fundamental zero-point fluctuations. We can find at which
temperature Tq quantum fluctuations start to be relevant by comparing to Equation 2.13:

〈
q2

〉
= q2

z.p. =
kBTq

mΩ2
m

=⇒ Tq =
ℏΩm

2kB
. (2.18)

Now it becomes clear why light manifests clear quantum phenomena at room temperature
wether mechanical resonators do not. The temperature requirement for near-infrared light is
around 104K, well above room-temperature. In the other hand, mechanical resonators with
frequencies in the range from Hz up to GHz require temperatures down to 10pK and up to
10mK.
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The rationale followed above is of course related to the thermal occupation of the harmonic
oscillator. Taking the approach of quantum statistical mechanics, the canonical partition func-
tion is:

Z =
∞∑
n=0

exp
{
−ℏΩm

kBT
(n+ 1/2)

}
. (2.19)

We can obtain the mean thermal phonon number, which follows Bose-Einstein statistics:

nth = ⟨n̂⟩ = n̄(Ωm) =
1
Z

∞∑
n=0

exp
{
−ℏΩm

kBT
(n+ 1/2)

}
n =

1

exp
{ℏΩm
kBT

}
− 1

, (2.20)

and the position fluctuations in thermal equilibrium:

〈
q̂2

〉
=

1
Z

∞∑
n=0

exp{−βℏΩm(n+ 1/2)} ⟨n| q̂2 |n⟩ = q2
z.p. + 2q2

z.p.nth. (2.21)

It is evident that for quantum fluctuations to dominate, we must prepare our system in a low
phonon occupation state.

2.2.2 Quantum dynamics of the open harmonic oscillator

Finding the time evolution of the oscillator’s quantum state would, in principle, require us to
keep track of evolution of its environment while it interacts with it. Doing so starts with a
Hamiltonian of the form:

Ĥ = Ĥsys︸︷︷︸
System of interest

+ Ĥenv︸︷︷︸
Environment

+Hsys−env︸   ︷︷   ︸
Interaction

. (2.22)

In practice, we do not have experimental access to observables in the environment’s Hilbert
space. Furthermore, even if one had access to the observables, the environment usually has
a much larger dimensionality than our system, for example, think of a mechanical oscillator
connected to all the other mechanical modes of its surrounding medium.

Langevin equation approach

A possible approach to model the evolution of the harmonic oscillator open to its environment
is to model the oscillator connected to an infinite number of mechanical oscillators through
spring constants kj . Working in the Heisenberg picture, this model can be reduced to the Marko-
vian quantum Langevin equation, which describes the time evolution of operators. A detailed
derivation can be found in [33] and a summary in Appendix A.

The Markovian quantum Langevin equation describing the evolution of an operator Ô(t) in
the Heisenberg picture is:

˙̂O(t) =
1
iℏ

[
Ô(t), Ĥsys(t)

]
+ i

√
2Γm

[
Ô(t), Q̂(t)

]
P̂in(t) +

Γm

2iΩm

{[
Ô(t), Q̂(t)

]
, ˙̂Q(t)

}
. (2.23)

P̂in(t) is an input momentum operator. It does not have the same units as P̂ because it is the rate
of incoming momentum due to an stochastic force arising in the bath. In a thermalized bath,
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the nature of P̂in(t) is related to the quantum fluctuation-dissipation theorem [33], it has mean
zero and the following power spectral density (PSD):

SP̂inP̂in
(ω) =

ω
Ωm

(n̄(ω) + 1) (2.24a)

SP̂inP̂in
(−ω) =

ω
Ωm

n̄(ω) (2.24b)

with ω ≥ 0 and n̄(ω) is the occupation of a mode at ω introduced in Equation 2.20. The reader
can refer to Appendix C for details about the conventions related to power spectral densities
used in this work.

Making use of Equation 2.23, we find differential equations for Q̂(t) and P̂ (t):

˙̂Q = ΩmP̂ (2.25)
˙̂P = −ΩmQ̂ − Γ P̂ +

√
2ΓmP̂in, (2.26)

which we can cast into a single second-order differential equation by differentiating the first
expression:

¨̂Q+ Γm
˙̂Q+Ω2

mQ̂ = Ωm

√
2ΓmP̂in. (2.27)

The equation is better solved in frequency space. The Fourier transform definition used across
this work is:

Â(ω) = F
{
Â(t)

}
(ω) =

∫ ∞
−∞

eiωtÂ(t)dt , (2.28)

so that F
{

dnÂ(t)
dtn

}
(ω) = (−iω)nF

{
Â(t)

}
(ω). Making use of this identity we find:

Q̂(ω) =
Ωm

Ω2
m −ω2 − iωΓm︸              ︷︷              ︸

χm(ω)

√
2ΓmP̂in(ω), (2.29)

where the mechanical susceptibility χm(ω) has been introduced. Different conventions for the
mechanical susceptibility exist across the literature depending if it is defined in terms of dimen-
sional or dimension-less operators. The PSD of Q̂ can be found making use of Equation C.13:

SQ̂Q̂(ω) = |χm(ω)|2SP̂inP̂in
(ω). (2.30)

SQ̂Q̂(ω) thus inherits the asymmetry arising from the quantum fluctuation-dissipation theorem
seen in Equation 2.24. The asymmetry is exclusive to the quantum treatment, in the classical
limit of n̄≫ 1 the asymmetry is negligible n̄(Ωm)+1 ≃ n̄(Ωm). If one has experimental access to
SQ̂Q̂(ω), the occupation of the oscillator can be measured without calibration using the size of
the asymmetry:

SQ̂Q̂(Ωm)

SQ̂Q̂(−Ωm)
=
n̄(Ωm) + 1
n̄(Ωm)

, (2.31)

where we have used the fact that |χm(ω)|2 = |χm(−ω)|2. With proper calibration, the phonon
occupation can be found from the area under SQ̂Q̂ (using the relation between position fluctu-
ations and occupation found in Equation 2.21 together with Equation C.11):

⟨n̂⟩+ 1
2

=
〈
Q̂2

〉
=

1
2π

∫ ∞
−∞
SQ̂Q̂(ω)dω =

1
π

∫ ∞
0
S̄Q̂Q̂(ω)dω, (2.32)
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where I have introduced the symmetrized PSD of an operator: S̄ÔÔ(ω) = 1
2

[
SÔÔ(ω) + SÔÔ(−ω)

]
.

The symmetrized PSD is important because a real-valued variable must have symmetric PSD.
Various experimental detection techniques provide a measurement of the symmetrized S̄(ω)
but not of th epossibly asymmetric S(ω).

2.2.3 Cavity-free optomechanical interaction

To finish our discussion about the harmonic oscillator, let us imagine the simplest optomechan-
ical configuration, a light beam impinging on a mechanical oscillator. A continuous laser beam
has a certain mean photon rate

〈
Ṅ

〉
= P

ℏωl , with P its power (measured in Watts) and ωl its
angular frequency (measured in radians per second). If the beam is in a coherent state with
no classical noise sources, the variance in the amount of photons received in a time interval ∆t
is [24]: 〈

N2
〉
− ⟨N ⟩2 =

〈
Ṅ

〉
∆t, (2.33)

due to the Poissonian statistics of the coherent state. It follows that the radiation pressure that
the beam exerts upon reflection has mean value:〈

Fopt

〉
=

2ℏωl
c
R

〈
Ṅ

〉
, (2.34)

and a power spectral density:

SFoptFopt
=

4ℏ2ω2
l

c2 R2
〈
Ṅ

〉
, (2.35)

these expressions have been obtained by considering that each photon carries a momentum
equal to ℏωl /c and a fraction 0 ≤ R ≤ 1 is actually reflected off of the object due to limited
reflectivity. We can think about radiation pressure as the combination of a static force that
shifts the rest position of the oscillator plus a stochastic force of quantum origin.

With the goal of comparing it with the thermal force, let’s consider a λ = 1550nm laser beam
with power P = 10mW illuminating a Silicon-Nitride membrane nanomechanical resonator of
frequency Ωm = 2π ·1MHz, mass ofm = 2ng, dissipation rate of Γm = 2π ·10mHz and reflectivity
of R = 1.5%. The average radiation pressure is

〈
Fopt

〉
≃ 1pN, causing a static displacement of

around 12fm. The magnitude of the stochastic force is S1/2
FoptFopt

≃ 3.6 × 10−21N/
√

Hz, which
is orders of magnitude smaller compared to that of the thermal force, given by the classical
fluctuation dissipation theorem, S1/2

FthFth
=
√

2mΓmkBT = 3.2× 10−17N/
√

Hz.

The disparity between the quantum and the thermal fluctuations can be addressed without
the need of lowering the temperature by using oscillators with smaller mass and higher quality
factor (levitated nano-particles for example), or by using higher optical power. In the next
section, we will take a look at optical cavities, which allow us to build up optical power and
reach a regime dominated by quantum phenomena.

2.3 Optical cavities

An optical cavity or optical resonator is a system where one or more optical modes propagate
cyclically in a closed space. The simplest optical cavity consists in trapping light within two
highly reflective mirrors, like shown in Figure 2.1. Let us label the mirrors as mirror 1 and 2.
If we illuminate mirror 1 with coherent light, a small fraction of light will transmit through it
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L

Mirror 1 Mirror 2

Figure 2.1: An optical cavity can be set up using two highly reflective mirrors,
one of them must be curved in order to refocus the beam after each round trip.

and bounce back and forth between the two mirrors. Light with specific wavelengths will con-
structively interfere, creating a standing wave between the mirrors. Of course, one of the two
mirrors must be curved, as to compensate for the diffraction of the beam as it travels between
the two mirrors. Input light of the right wavelength and shape will build-up the field inside
the cavity, which will then exit through both mirrors.

In this work, we exploit the field enhancement by a cavity in order to get closer to the
quantum optomechanical regime at room temperature. Before mshowing how a mechanical
resonator can interact with a cavity, we give a brief description of the linear Fabry-Perot cavity.
First, we find the resonant wavelengths and spatial modes according to classical optics. Then
we proceed with the quantum mechanical picture of the optical cavity.

2.3.1 The resonant modes and spectrum of an optical cavity

z

r1, t1 r2, t2
Ei

Er

EtE1

E2

L

Figure 2.2: One-dimensional model of a linear Fabry-Perot cavity. Two mirrors
are modeled as thin interfaces for convenience.

If we scan the frequency of a light source going into a cavity, we will see peaks of light transmis-
sion at the resonant frequencies, which are accompanied by drops in the amount of reflected
light. We can model this behavior, forgoing any modeling of the spatial mode of the light, with a
one-dimensional picture as illustrated in figure 2.2. Two mirrors are separated by a distance L,
which we will consider as infinitesimally thin interfaces with field transmissivity and reflectiv-
ity T1, T2, R1 and R2. We consider three external optical modes, the incoming Ei, the reflected
Er and the transmitted Et, and one internal mode split into a z-positive propagating part E1 and
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a z-negative propagating part E2. The fields must fulfill the following boundary conditions:

E1 = it1Ei + r1E2e−ikL (2.36)

E2 = r2E1e−ikL (2.37)

Er = r1Ei + ir1E2e−ikL (2.38)

Et = ir2E1e−ikL, (2.39)

where k = 2π
λ is the wave number of the light. We can easily find the fields as a function of the

incoming field Ei:

E1 =
ir1

1− r1r2e−i2kL
Ei (2.40)

E2 =
it1r2e−ikL

1− r1r2e−i2kL
Ei (2.41)

Er =
(
r1 −

t21r2
ei2kL − r1r2

)
Ei (2.42)

Et =
it1t2e−ikL

1− r1r2e−i2kL
Ei, (2.43)

the ratio reflected and transmitted power to input power can be obtained by taking the absolute
value squared of these expressions. These are periodic functions of k with a period π

L and thus
also of ω, the angular frequency, with period πc

L . This quantity is known as the free spectral
range (FSR) of the cavity. The peaks in transmission and dips in reflection will be spaced one
FSR from each other. The absolute resonant frequencies will depend on the cavity length L

and the phases induced in reflection φR1
and φR2

(rj =
∣∣∣rj ∣∣∣eiφrj ). We can find the resonant

frequencies from the transmitted power ratio:

Tcav =
∣∣∣∣∣Et

Ei

∣∣∣∣∣2 =
T1T2

1 +R1R2 − 2
√
R1R2 cos

(
2kL−φR1

−φR2

) , (2.44)

where Tj =
∣∣∣rj ∣∣∣2 and Rj =

∣∣∣rj ∣∣∣2. Tcav will be maximized at wave numbers kn:

km = kFSR ·m+
1

2L

(
φR1

+φR2

)
(m ∈ Z+), (2.45)

similarly:

ωm =ωFSR ·m+
c

2L

(
φR1

+φR2

)
(m ∈ Z+). (2.46)

With the goal of finding the linewidth of the resonant peaks, we will proceed with the approx-
imation of small detunings compared to FSR: ∆ = ωl −ωc ≪ ωFSR, with ωl being the frequency
of the light pumping the cavity and ωc being a certain resonance frequency of the cavity. In this
case.

Tcav(∆) ≃ T1T2(
1−
√
R1R2

)2
κ2/4

κ2/4 +∆2 , (2.47)

where:
κ =

ωFSR

F
(2.48)
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is the full-width half-maximum (FWHM) linewidth of the resonance and F is the finesse:

F =
π(R1R2)

1
4

1−
√
R1R2

. (2.49)

In order to model losses, we have been careful in considering Rj + Tj , 1. Losses play a big
role in the transmission and reflection spectra of the cavity, which will be discussed in a later
section.

The obvious flaw in the one-dimensional model is that it fails to consider the diffraction of
the beam. Two planar mirrors cannot form a stable cavity, at least one of the mirrors must be
curved in order to refocus the beam after each round-trip. For a given cavity geometry, with
mirror radius of curvature R1, R2 and length L, there is only one combination of waist position
z0 and waist size w0 that remain equal after one round-trip. This fact still allows for an infinite
number of possible transverse spatial modes: the Hermite-Gaussian beams (if the cavity is made
with spherical mirrors and is well described by the paraxial approximation).

The reader can refer to the work of Kogelnik and Li [34] for a detailed derivation of the
cavity mode’s waist size and position. Following is a summary of their method and results.
Using the ray transfer matrix method, we find how the complex beam parameter changes after
one round-trip. The complex beam parameter q at a point of the optical axis is defined by the
curvature R and radius w of the beam:

1
q

=
1
R
− i

λ

πw2 . (2.50)

Starting with the complex beam parameter of the cavity mode at mirror 1 q1, the ABCD matrix
associated with one round-trip is:(

A B
C D

)
=

(
1 0
− 2
R1

1

)
︸     ︷︷     ︸

Mirror 1 reflection

·
(
1 L
0 1

)
︸ ︷︷ ︸

Propagation 2→ 1

·
(

1 0
− 2
R2

1

)
︸     ︷︷     ︸

Mirror 2 reflection

·
(
1 L
0 1

)
︸ ︷︷ ︸

Propagation 1→ 2

. (2.51)

The beam is then transformed according to:

q′1 =
Aq1 +B
Cq1 +D

. (2.52)

Now we impose the condition q1 = q′1 and solve to find the cavity mode’s waist and position
(measured from mirror 1):

w2
0,c =

λL
π

√
G1G2(1−G1G2)

(G1 +G2 − 2G1G2)2 , (2.53)

z0,c =
L(R2 −L)

R1 +R2 − 2L
(2.54)

where Gi = 1 − L
Ri

. From equation (2.53) we can extract the stability criterion of the cavity by
ensuring a real w0,c:

0 ≤ G1G2 ≤ 1. (2.55)

Finally, we must consider that the phase of a Hermite-Gaussian beam evolves differently than
that of a plane-wave, it acquires an additional phase called the Gouy phase. The Gouy phase of
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a beam of orders m,n along the optical axis is:

Φm,n(z) = (m+n+ 1)arctan
(
λ

πw2
0

z

)
. (2.56)

This fact modifies our resonance condition to:

ωl,m+n =ωFSR · l +
c

2L

(
φR1

+φR2

)
+ωFSR

1
π

(m+n+ 1)arccos
√
G1G2 (l ∈ Z+). (2.57)

The spectrum of higher-order transverse modes is frequency shifted respect to the HG00 mode,
but it retains the same free spectral range. This effect proves to be very useful for characterizing
the geometry of a cavity.

2.3.2 Quantum dynamics of optical cavities

The quantization of the electromagnetic fields of a cavity is at the core of quantum optics. The
procedure can be found in any quantum optics textbook, for example, Introductory Quantum
Optics by Gerry and Knight [35]. I will skip a detailed derivation and start from the Hamiltonian
of one of the resonant modes of the cavity, which is that of a harmonic oscilator:

Ĥ = ℏωc
(
â†â+

1
2

)
, (2.58)

where â† and â are the creation and annihilation operators, adding and removing one photon
to the cavity. â†â = n̂ is the number operator, which is hermitian and represents the number of
photons in the cavity. â† and â are non-commuting:[

â, â†
]

= I. (2.59)

In the Heisenberg picture, the time-evolution of operators can easily be found using the Heisen-
berg equation ˙̂O = 1

iℏ
[
Ô, Ĥ

]
. To model a real cavity and not just an ideal cavity with perfectly

reflecting mirrors, we must include the connection of the cavity mode with external modes
through both mirrors and through possible loss channels.

We will use a quantum Langevin equation, particularly the one presented in Chapter 1.4 in
the book Quantum Optomechanics by Bowen and Milburn [33]:

˙̂O =
1
iℏ

[
Ô, Ĥ

]
+

∑
i=1,2,ℓ

{
−
[
Ô, â†

](κi
2
â−
√
κi âin,i

)
+
(κi

2
â† −
√
κi â
†
in,i

)[
Ô, â

]}
, (2.60)

here we consider three channels, mirror 1 and 2, with associated rates κ1 and κ2, and a loss
channel with rate κℓ, which encompasses all connections to optical modes that we are inca-
pable of measuring. Some important approximations have been done in order to arrive at the
expression (2.60):

• The Rotating Wave Approximation (RWA) assumes that all coupling rates connecting to
external modes (κi) are much smaller than the characteristic frequencies of the system
(in this case ωc). This is a very sensible approximation for quantum optics, as the optical
frequency is beyond THz.

• The Markovian approximation, stochastic processes in the bath are assumed to be delta
correlated.



2.3. OPTICAL CAVITIES 23

• Thermal effects have not been considered due to ℏωc≫ k · 300K.

We use equation (2.60) to find the time evolution of â and â† in the Heisenberg picture:

˙̂a(t) = −
(κ

2
+ i∆̂(t)

)
â(t) +

∑
i=1,2,ℓ

√
κi âin,i(t), (2.61)

˙̂a†(t) = −
(κ

2
− i∆̂(t)

)
â†(t) +

∑
i=1,2,ℓ

√
κi â
†
in,i(t), (2.62)

where we have moved to a rotating frame of the input laser frequency ωl , and we have allowed
the cavity’s resonant frequency to evolve over time, including a dependency on quantum ob-
servables (hence the hat). We have also defined κ = κ1 + κ2 + κℓ. In the next paragraphs, it
will become apparent that this is the same linewidth obtained in the classical treatment of the
optical cavity. It is important to state that operators âin,i are photon rate operators, normalized
so that â†in,i âin,i has units of (photons/s) instead of (photons).

In experiments with high finesse cavities, the average number of photons in the cavity is
much larger than the quantum fluctuations of the field. It becomes convenient to split the op-
erators into a steady-state classical contribution and a fluctuation term including both classical
stochastic processes and quantum behavior:

â(t) = α + δâ(t), (2.63)

âin,i(t) = αin,i + δâin,i(t). (2.64)

∆̂(t) = ∆̄+ δ∆̂(t). (2.65)

We will consider the cavity being pumped exclusively from port 1, so that αin,1 , 0 and αin,2 =
αin,ℓ = 0. Vacuum fluctuations will enter the cavity from each port and thus δâin,i(t) , 0 despite
a non-existing mean field.

The steady-state fields

By setting the time derivatives in equation (2.61) to zero, we find the steady-state intra-cavity
field:

α =
√
κ1

κ
2 + i∆̄

αin,1, (2.66)

and intra-cavity photon number:

nc = |α|2 =
κ1

κ2

4 + ∆̄2

∣∣∣αin,1

∣∣∣2. (2.67)

The output fields can be found using the input-output relations [36]:

âout,i(t) = âin,i(t)−
√
κi â, (2.68)
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where âout,i are also photon-rate operators. The steady-state reflected and transmitted field are:

αout,1 =
κ−2κ1

2 + i∆̄
κ
2 + i∆̄︸       ︷︷       ︸
rcav(∆̄)

αin,1 (2.69)

αout,2 = −
√
κ1κ2

κ
2 + i∆̄︸    ︷︷    ︸
tcav(∆̄)

αin,1, (2.70)

Finally the steady reflected and transmitted photon rates are:

∣∣∣αout,1

∣∣∣2 =
(κ−2κ1)2

4 + ∆̄2

κ2

4 + ∆̄2︸          ︷︷          ︸
Rcav(∆̄)

∣∣∣αin,1

∣∣∣2, (2.71)

∣∣∣αout,2

∣∣∣2 =
κ1κ2
κ2

4 + ∆̄2︸   ︷︷   ︸
Tcav(∆̄)

∣∣∣αin,1

∣∣∣2. (2.72)

These expressions are consistent with the classical approach. In particular, comparing equation
(2.72) to equation (2.47), we see how κ is the same FWHM linewidth of the Lorentzian shaped
resonance. We will now use equations (2.69), (2.70), (2.71) and (2.72) to identify three interest-
ing regimes depending on the relation between the different decay rates, which illustrated in
figure 2.3:

• κ1 ≃ κ: If the coupling rate of the input mirror dominates over the other rates, the
reflected power will be flat as light that enters the cavity exits through the same port
(Rcav ≃ 1 and Tcav ≃ 0). Despite the flatness of the cavity spectrum in terms power, the
cavity still has a strong effect on the phase of the reflected beam rcav(∆ = 0) ≃ −1. This
regime is often referred to as the overcoupled regime.

• κ1 = κ/2: Lowering the weight of κ1 respect to the other rates, the dip in reflectivity
becomes deeper. The behavior is maximized when the condition κ1 = κ/2 is fulfilled. In
this regime, all input light that enters the cavity exits through the end mirror and the loss
channel. This causes the reflection to dip to zero at zero detuning: Rcav(∆ = 0) = 0. The
amount of light transmitted will depend on the ratio κ1/κ.

• κ ≃ κℓ ≫ κ1,κ2. If the loss rate dominates, light that enters the cavity exits mainly through
the loss channel, this reduces the dip in the reflection fieldRcav(∆ = 0) ≃ 1 and the amount
of transmission Tcav(∆ = 0) ≃ 0. Even if the spectrum in terms of power looks similar to
the overcoupled regime, the reflected beam does not acquire much phase rcav ≃ 1. This
regime is often called the undercoupled regime and is rarely of use as the cavity acts as a
simple mirror of reflectivity R1.
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Figure 2.3: Cavity response in reflection and transmission, upper row is the opti-
cal power reflected and transmitted normalized to input power and lower row is
the phase. In subfigure a., κ1 = 100κ2 = 100κℓ, b. κ1 = κ/2, κ2 = κ/5, κℓ = 3κ/10,
c. κℓ = 100κ1 = 100κ2
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2.4 The dispersive optomechanical hamiltonian

Dispersive cavity optomechanics describes systems where the displacement of a mechanical oscil-
lator causes changes in the resonant frequency of an optical cavity. The interaction could also
be dissipative if the mechanical oscillator changes the coupling of the cavity to external modes.
Dissipative cavity optomechanics has been explored considerably less than its dispersive coun-
terpart. In this work, we will follow such tradition.

The canonical dispersive cavity optomechanics system is a cavity with a mirror attached
to a spring, such as the one depicted in figure 2.4. A displacement of the compliant mirror
q changes the length of the cavity, which changes the resonant condition. A certain resonant
mode with mode number m will change according to:

ωc,m =m
πc
L+ q

=ωc,m,0 −
ωc,m,0
L︸ ︷︷ ︸
G

·q+O
(
q2

)
, (2.73)

if q ≪ L, which is a common occurrence in most experiments, we obtain a linear dependence
between displacement and cavity frequency. The parameter connecting both is referred to as
G and has units of Hz/m. The strength of the transduction is proportional to the resonant
frequency and inversely proportional to the the length of the cavity. An intuitive way of under-
standing the first dependence is that the phase added to the intracavity light by displacement
q inversely scales with wavelength (in other words, the smaller the wavelength, the better the
interferometer). The fact that G ∝ L−1 is less intuitive.

A Hamiltonian for the optomechanical interaction in a cavity can be found thanks to this
relation. The Hamiltonian that follows will be valid for the dispersive interaction of any system
dominated by ∂ωc

∂q = G. Starting from the Hamiltonian of an optical cavity of frequency ωc−Gq,
with q being the displacement of a mechanical oscillator of frequency Ωm:

Ĥ = ℏ(ωc −Gq̂)â†â+ ℏΩmb̂
†b̂, (2.74)

which we can split into a bare Hamiltonian Ĥ0 and an interaction Hamiltonian ĤI:

Ĥ = ℏωcâ†â+ ℏΩmb̂
†b̂︸                ︷︷                ︸

Ĥ0

+ℏg0

(
b̂+ b̂†

)
â†â︸           ︷︷           ︸

ĤI

, (2.75)

where, making use of the relation q̂ = xz.p.
(
b̂+ b̂†

)
, we have introduced the single-photon coupling

strength g0 = Gxz.p. with units of rad ·Hz. g0 is an interesting figure of merit because it deter-

q

L

Figure 2.4: The canonical dispersive optomechanical system. A Fabry-Perot cav-
ity with a mirror attached to a spring.
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mines the strength of processes involving the creation and annihilation of single phonons and
photons.

2.5 Membrane-in-the-middle cavity optomechanics

z

r1, t1 rm, tm r2, t2
Ei

Er

EtE1

E2

E3

E4

L1 L2

Figure 2.5: One-dimensional model of a membrane-in-the-middle experiment.
Both mirrors and membrane are modeled as thin interfaces.

Building a cavity optomechanics experiment in the moving end-mirror configuration is
challenging because we need a mirror with high-reflectivity, large zero-point fluctuations and
low dissipation rate. In the past years, great steps have been managed towards this goal through
adding photonic crystal reflectors on thin silicon-nitride membranes. Starting with the first
proof of concept by Norte et al[17], high-finesse systems have been achieved in the work by
Zhou et al[37] and Enzian et al[38]. Going even further, the photonic crystal mirror can also
act as a curved mirror by engineering the phase that is reflected as done in the recent work by
Agrawal et al[39].

In this work, we have opted to build a membrane-in-the-middle of a cavity system (MIM).
In this configuration pioneered by Thompson et al[40], a partially reflecting membrane sits in
the space between the two mirrors of a high-finesse optical cavity. Suspended silicon-nitride
resonators are ideal for the MIM configuration due to their partial reflectivity and their low
optical absorption. Furthermore, by eliminating the need of high-reflectivity, the focus has
been on increasing their quality factor. Optimal design of trampolines and phononic crystal
structured membranes have pushed the quality factor of SiN membranes more than two order
of magnitude compared to a simple square window design. We will leave the discussion of the
mechanical resonator used in this work for Chapter 3.

In the rest of this section, we will summarize the analysis of the optomechanical interaction
in MIM systems following the approach found in [41]. We set up a one-dimensional model
as we did in Section 2.3, but we now add an extra thin interface to represent the membrane,
as illustrated in Figure 2.5. The membrane has field reflectivity and transmissivity rm and tm,
given by the following expressions[41]:

rm =

(
n2 − 1

)
sinknLm

2incosknLm + (n2 + 1)sinknLm
(2.76)

tm =
2n

2incosknLm + (n2 + 1)sinknLm
, (2.77)

where n is the possibly complex refractive index and Lm is the thickness of the membrane. The
reflectivity for a 20nm thin SiN membrane (n ≃ 2) is around 1.4% in the wavelengths where the
experiment can be operated. Figure 2.6 shows its dependency on wavelength.
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Figure 2.6: Theoretical reflectivity of a 20nm thin SiN membrane (n ≃ 2) at dif-
ferent wavelengths

The set of equations given by the boundary conditions of the fields inside a MIM are the
following:

E1 = it1Ei + r1E2e−ikL1 (2.78a)

E2 = rmE1e−ikL1 + itmE4e−ikL2 (2.78b)

E3 = itmE1e−ikL1 + rmE4e−ikL2 (2.78c)

E4 = r2E3e−ikL2 (2.78d)

Er = r1Ei + it1E2e−ikL1 (2.78e)

Et = it2E3e−ikL2 , (2.78f)

this is an easily solvable linear system of equations, albeit the solutions are quite cumber-
some to write down. In the other hand, the cavity resonant condition, which can be found by
imposing that the phase of the transmitted field be a multiple of π, results in a transcendental
equation [41, 42]:

|rm|cos[kMIM
c (L1 −L2)] = cos[kMIM

c (L1 +L2)− arg(tm)], (2.79)

with kMIM
c being a resonant wave number. We can find an approximate solution by considering

that the membrane is located near the center of the cavity, so that L1−L2 is small compared to L.
Furthermore, if we also assume that the change in resonant wave number is small compared to
the empty cavity resonant wave number kc, we can approximate the argument of the left-hand
side cosine as kMIM

c (L1 −L2) ≈ kc(L1 −L2). Now it is straight-forward to find:

ωMIM
c ≃ ωFSR

π

[
arg(tm) + arccos

{
|rm|cos

[ωc
c

(L− 2q)
]}]
, (2.80)

where we have included the position of the membrane q with origin at the first mirror, so that
q = L1 = L−L2. In order to find the optomechanical transduction factor G, we must evaluate the

derivative G = dωMIM
c

dq :

GMIM =
dωMIM

c

dq
= −2|rm|

ωc
L

sin[kc(L− 2q)]√
1− |rm|2 cos2 [kc(L− 2q)]

. (2.81)

Contrary to the canonical case, GMIM depends on q, vanishing when q fulfills:

q =
L
2
− λc

4
n n = 0,±1,±2, ... (2.82)
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At L/2 there is always a field node (for odd mode numbers) or an anti-node (for even mode
numbers). Moving by an amount λc/4, the next node or anti-node is reached. Thus, we can
conclude that the optomechanical coupling is zero when the membrane sits at a field node
or anti-node. At the mid-point between a node and an anti-node, the maximum coupling is
reached, which for a given length is:

|GMIM| = 2|rm|
ωc
L

= 2|rm|G. (2.83)

Usually, the factor 2|rm| is below one and we achieve less coupling than if we were in a moving
end-mirror configuration. Looking at Figure 2.6, at λ = 1550nm, a MIM system with a 20nm
thick Silicon-Nitride membrane will have roughly a fourth of the optomechanical coupling of
that of a moving-end mirror configuration (2|rm| ≃ 0.24). It seems quite remarkable that MIM
can achieve similar performance in terms of coupling. However, in the next chapters we will
find that the cooperativity, which is the important figure of merit, depends quadratically on
the coupling rate. If a sufficiently reflective resonator is used, such as the 85nm thick trampo-
line used in the work by Pluchar et al [43], 2|rm| > 1 and the MIM system should theoretically
perform better than an equivalent moving end-mirror configuration. In practice, the approxi-
mations that we have done might not hold for membranes of high-reflectivity.

It is worth to numerically obtain the spectrum of a MIM system to both check that our
approximation is valid as well as understand how the presence of the membrane alters the
linewidth of the cavity. We will do so by using the Python library SymPy [44] to symbolically
solve Equation 2.78 and obtain an expression for the transmitted field. We identify the reso-
nances with a peak finding algorithm. By finding the resonant frequencies a second time after
moving the membrane by 100pm, we can use the difference in frequency to estimate G through
G = ∆ωc/100pm. The linewidth at each resonant mode is measured by fitting a Lorentzian
peak function. For the following calculations, we will use the parameters of the actual experi-
ment, which are described in Chapter 3. The MIM system implemented is completely rigid, the
length is fixed to L = 126µm with the 20nm thick Silicon-Nitride membrane sitting L1 = 58µm
away from the first mirror. We will also use the mirror properties of our experiment, with
transmissions T1 = 100ppm and T2 = 10ppm.

We first look at the transmission spectrum of the MIM system, show in Figure 2.7. We notice
that the presence of the membrane significantly changes the spectrum of the optical cavity.
Comparing with the empty cavity, we first see an overall shift in the resonant location and, more
interestingly, the fraction of light transmitted changes from mode to mode. It seems that the
relative position of the membrane respect to the field changes the effective coupling condition
of the cavity. The optomechanical coupling at each resonant mode is shown in Figure 2.8,
we see very good agreement between the numerical simulation of G and the approximated
analytical expression in Equation 2.81. More interestingly, we see a strong anti-correlation
between optomechanical coupling and cavity linewidth. However, because a negative G still
means strong interaction, some modes present strong coupling |G| while presenting a narrow
linewidth.

Perhaps surprisingly, the finesse of the cavity can be enhanced in the presence of a thin
slab. Intuitively, the cavity round-trip might be effectively longer or shorter depending on the
probability of reflecting off the membrane, changing the decay rate of intracavity light. By
calculating the spatial distribution of the cavity field (shown in the bottom plots of Figure 2.8),
we see that in cases where the linewidth of the MIM cavity is narrower than the empty cavity, the
strength of the field is concentrated in the long side of the cavity (in the case we have simulated:
L2 > L1). The opposite case is also true. The MIM linewidth is similar to the empty cavity
linewidth when G is close to zero and the field concentration at both sides of the membrane is
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Figure 2.7: Comparison of the power transmission spectrum of a MIM system
with (orange) and without a membrane (blue). The L = 126µm cavity is pumped
through a a mirror of 99% reflectivity and the transmission measured through
a 99.9% reflectivity end-mirror. The mirrors have the same reflectivity ratio as
our experiment mirrors, but we have lowered the reflectivity for illustration pur-
poses.

similar. This finesse enhancing effect is not due to the asymmetry of the reflectivity coatings, as
it is observed for a symmetrically coated cavity too. If the membrane sits perfectly at the center
of the cavity, the linewidth is equal to the empty cavity linewidth and G is zero at all resonant
wavelengths.

Although the strength of the interaction in a MIM system has a more complex behavior
than the canonical moving-end mirror, its nature is the same. We can treat MIM systems in
analogous way to the canonical configuration and use the same optomechanical Hamiltonian
in Equation 2.75. Generally, the theory that we develop in the following sections applies to
all cavity-optomechanics systems dominated by a linear coupling between the cavity frequency
and the resonator position.

2.6 The linearized cavity quantum optomechanics equations

The time-evolution of the optical mode can be found using the quantum Langevin equation
(Equation 2.60) together with the optomechanical Hamiltonian found above (Equation 2.75).
The evolution of the mechanical mode is found using the quantum Langevin equation for the
mechanical oscillator (Equation 2.23) and the optomechanical Hamiltonian. The resulting sys-
tem of coupled differential equations is:

˙̂a(t) = −
(κ

2
+ iωc + i

√
2g0Q̂

)
â(t) +

∑
i=1,2,ℓ

√
κi âin,i(t) (2.84)

¨̂Q(t) + Γm
˙̂Q(t) +Ω2

mQ̂(t) =
√

2ΓmΩmP̂in(t)−
√

2g0Ωmâ
†(t)â(t). (2.85)

We will start by considering that we use a laser of mean frequency ωl to feed the cavity through
mirror 1 (port i = 1). Vacuum leaks in through the other mirror ( port i = 2) and through the
loss channels (i = ℓ). Output port 1 represents the cavity reflection and output port 2 the cavity
transmission.
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Figure 2.8: Optomechanical coupling and linewidth in a membrane-in-the-
middle optomechanical system. Top plot: The optomechanical factor G and the
cavity linewidth κ are numerically calculated for a MIM system of cavity length
L = L1 + L2 = 126µm, with a mirror to membrane distance L1 = 58µm. We ob-
serve an anti-correlation between G and κ at the different resonant wavelengths.
The solid blue line is the analytical expression for G found in Equation 2.81,
the dashed orange line is the empty cavity linewidth calculated from the finesse
given by the mirror transmissivities (T1 = 100ppm and T2 = 10ppm). Bottom
plots: Strength of the intracavity field around the membrane at three different
resonant wavelengths, illustrating how G and κ depend on the relative position
and field concentration asymmetry respectively.
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Usually, both the optical and mechanical field have large expectation values compared to the
magnitude of their fluctuations. Thus, it is a good approximation to work in a linearized regime
where fluctuations are only considered up to linear order. We start the process of linearization
by separating all the time-dependent terms into a steady-state constant value and some possibly
quantum fluctuations around that value:

â(t) = α + δâ(t) (2.86a)

ωc(t) = ω̄c + δωc(t) (2.86b)

âin,1(t) =
[
αin,1 + δâin,1(t)

]
e−iωl t (2.86c)

âin,2(t) = δâin,2(t)e−iωl t (2.86d)

âin,ℓ(t) = δâin,ℓ(t)e
−iωl t (2.86e)

Q̂(t) = Q̄+ δQ̂(t), (2.86f)

where we have included time-dependent changes on the cavity resonance (δωc) due to motion
of the mirror and/or low-quality factor mechanical modes. The rotating phase in âin,2 and âin,ℓ
has been included for convenience, it does not alter the dynamics as both ports are connected
to vacuum. We will work in the rotating frame of the laser, so that â→ âe−iωl t transforming the
Langevin equation to:

˙̂a(t) = −
(κ

2
− i∆̄− iδ∆(t) + i

√
2g0Q̂

)
â(t) +

√
κjαin,j +

∑
i=1,2,ℓ

√
κiδâin,i(t) (2.87)

where we have introduced the average detuning:

∆̄ :=ωl − ω̄c, (2.88)

so that ∆̄ < 0 ⇔ ωl < ωc is referred to the laser being red-detuned and ∆̄ > 0 ⇔ ωl > ωc as
blue-detuned. The detuning fluctuations are then:

δ∆(t) = −δωc(t). (2.89)

An important note before proceeding: the expected value of a fluctuation term is not necessarily
zero:

〈
δÔ(t)

〉
, 0. The separation is done between steady-state and time-dependent fluctuations

so that in general
d
〈
δÔ(t)

〉
dt , 0.

2.6.1 The steady state

The presence of a mechanically compliant element will modify the steady-state spectrum of the
cavity. We define the steady-state values of the cavity field and mechanical position α and Q̄ by
imposing α̇ = 0 and ¨̄Q = ˙̄Q = 0 in the absence of fluctuations. We use Equation 2.87 to find:

α =
√
κ1αin,1

κ
2 − i∆̄+ i

√
2g0Q̄

−→
√
κ1αin,1
κ
2 − i∆̄

(2.90)

Q̄ = −
√

2g0

Ωm
|α|2, (2.91)

where the detuning can be redefined to take into account the steady change of the cavity reso-
nance due to the new equilibrium position of the resonator. If we don’t perform the redefinition,
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Figure 2.9: Optomechanical bistability: optomechanical interaction changes the
expected number of cavity photons from a Lorentzian shape to a shark-fin like
shape. When scanning a laser from negative to positive detuning, we will ob-
serve the transmitted power jump from the bottom solid line to the top solid line,
skipping the dashed solutions. nc has been solved numerically with parameters:
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2π · 1.5kHz. For comparison, the intracavity photon number of an empty cavity
has been plotted in faint orange, notice that, in the ideal case that the membrane
does not induce losses, the maximum intracavity power is the same.
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the above equations form a third-degree equation for α, thus, three possible solutions for α exist
at a given ∆̄. This is the origin of the optomechanical bistability.

We can write the equation for the intracavity photon number nc = |α|2 and solve as a function
of detuning ∆:

nc

κ2

4
+
(
∆̄+

2g2
0

Ωm
nc

)2 = κ1ṅin,1, (2.92)

this equation has either one or three solutions depending on parameters. For small detunings,
three solutions exist for high enough interaction, resulting in a resonance shape distinct from a
Lorentzian, as it can be seen in Figure 2.9.

2.6.2 The fluctuation dynamics

In our linearized picture, the fluctuation terms contain the dynamics of the system. To ob-
tain the differential equations for the fluctuations, we insert the definitions in Equation 2.86
in the Langevin equations for the cavity mode (Equation 2.87) and for the mechanical mode
(Equation 2.85):

˙δâ(t) = −
(κ

2
− i∆̄

)
δâ(t) + iαδ∆(t)− i

√
2gδQ̂(t) +

∑
i=1,2,ℓ

√
κiδâin,i(t) (2.93)

¨δQ̂(t) + Γm
˙δQ̂(t) +Ω2

mδQ̂(t) =
√

2ΓmΩmP̂in(t)−
√

2gΩm

(
δâ(t) + δâ†(t)

)
, (2.94)

where we have used that the steady-state intracavity field α is real, we have defined the light-
enhanced optomechanical coupling rate g = g0α = g0

√
nc and we have approximated away second

order flucutation terms (δ . . . · δ . . .). Thanks to the linearization, we now have a linear system
of ordinary differential equations that can be solved straightforwardly in frequency space by
taking the Fourier transform3:

δâ(ω) = χc(ω)

iαδ∆(ω)− i
√

2gδQ̂(ω) +
∑
i=1,2,ℓ

√
κiδâin,i(ω)

, (2.95)

δâ†(ω) = χ∗c(−ω)

−iαδ∆(ω) + i
√

2gδQ̂(ω) +
∑
i=1,2,ℓ

√
κiδâ

†
in,i(ω)

, (2.96)

δQ̂(ω) = χm(ω)
[√

2ΓmP̂in(ω)−
√

2g
(
δâ(ω) + δâ†(ω)

)]
(2.97)

With optical susceptibility:

χc(ω) :=
1

κ/2− i∆̄− iω
, (2.98)

and mechanical susceptibility:

χm(ω) :=
Ωm

Ω2
m −ω2 − iωΓm

. (2.99)

These are the same susceptibilities for a bare cavity and a bare mechanical oscillator. The
expression for δâ†(ω) has been found applying the Hermitian conjugate prior to the Fourier
transform. As expected from the non-linearized model, the position of the mechanical oscillator
is sensitive to the intra-cavity field amplitude (through δX̂ ∝ δâ(ω) + δâ†(ω)) but not its phase.

3Defined as Â(ω) = F
{
Â(t)

}
(ω) =

∫∞
−∞ eiωtÂ(t)dt and using the notation Â†(ω) = F

{[
Â(t)

]†}
(ω). More details on the

conventions used can be found in Appendix C
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2.6.3 Dynamical backaction

It is obvious that the mechanical oscillator will behave differently when it is part of a popu-
lated optical cavity. Consider the effect of a small displacement of the oscillator. If ∆̄ , 0, the
displacement changes the cavity’s resonant frequency, which in turn causes an increase or de-
crease of the cavity field as the pumping laser becomes less or more detuned. This results in
a radiation pressure force that depends on position, effectively changing the spring constant
of the resonator. The subsequent change in observed frequency is known as the optical spring
effect. Furthermore, a small resonator displacement also affects the phase of the cavity field.
The phase of the field does not directly couple to the resonator, but, as the intracavity field
rotates at ∆̄, a change in phase will eventually convert into an amplitude change. The result is
a time-delayed position-dependent force that can damp the oscillator when ∆̄ < 0, or excite the
oscillator when ∆̄ > 0, having no effect when ∆̄ = 0.

The optical spring effect and the modified damping rate are often referred to as dynamical
backaction and are modeled by the previously found Langevin equations. In order to do so,
we will first obtain an expression for δQ̂(ω) as a function of the input fluctuation operators
δP̂in, δâin,i(ω) and δâ†in,i(ω). This is done by directly inserting the field fluctuations found in
Equation 2.95 and Equation 2.96into Equation 2.97:

δQ̂(ω) = χm,opt(ω)
{√

2ΓmP̂in(ω)

+
√

2gα[χ∗c(−ω)−χc(ω)]δ∆(ω)

−
√

2g
∑
i=1,2,ℓ

√
κi

[
χ∗c(−ω)δâ†in,i(ω) +χc(ω)δâin,i(ω)

]}
,

(2.100)

where we have introduced the modified mechanical susceptibility χm,opt(ω):

χ−1
m,opt(ω) = χ−1

m (ω) +
4g2∆̄(

κ
2 − iω

)2
+ ∆̄2

. (2.101)

In the picture of the modified mechanical susceptibility, we have removed dependency on the
intracavity field values. The effective forces acting on the mechanical oscillator are: the fluc-
tuations of its thermal bath P̂in, fluctuations in the cavity detuning δ∆ and fluctuations in the
input fields δâin,i . As expected from our previous discussion, in the resonant case ∆̄ = 0, dy-
namical backaction disappears and the modified susceptibility becomes the regular mechanical
susceptibility.

The modified susceptibility χm,opt(ω) is generally not Lorentzian-shaped. It will even be-
come doubled-peaked in the strong-coupling regime g ≫ κ,Ωm [25]. Outside the strong-
coupling regime, we can consider that the modified optical susceptibility maintains its Lorentzian
shape but with a frequency change δΩm due to the spring effect and additional damping/anti-
damping δΓm. Inserting these increments into the definition of the mechanical susceptibility
(Equation 2.99) and comparison to the formula for the modified susceptibility (Equation 2.101,
we obtain the following relations:

δΩm(ω) =
1
2

Re

 4g2∆̄(
κ
2 − iω

)2
+ ∆̄2

 (2.102)

δΓm(ω) = −Ωm

ω
Im

 4g2∆̄(
κ
2 − iω

)2
+ ∆̄2

, (2.103)
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where we have considered δΩm≪Ωm. Around the mechanical frequency (ω ≃Ωm) and in the
side-band unresolved regime Ωm≪ κ, the expressions take the form:

δΩm ≃ g2 2∆
κ2

4 +∆2
. (2.104)

δΓm := Γ
opt
m ≃ −g2Ωm

4∆κ(
κ2

4 +∆2
)2 . (2.105)

More general expressions can be found in [25].

The total effective damping rate of the resonator is thus:

Γeff = Γm + Γ
opt
m (2.106)

which might become negative when ∆̄ > 0. The antidamping manifests as exponentially grow-
ing mechanical oscillations when the laser is blue-detuned. The phenomenon, often referred
to as self-induced oscillations or phonon lasing, cannot be fully understood in our linearized ap-
proach as the small fluctuation approximation quickly breaks down.

2.6.4 Optical fluctuations

The mechanical compliance of our optical cavity strongly alters its behavior. Not only will the
mechanical fluctuations be imprinted in the optical field, correlations between the amplitude
and phase of the light can arise mediated by the mechanical resonator. We will first look at the
intracavity field and then derive the output fields, the ones that we can measure.
We will solve the Fourier-space equations of operators δâ,δâ† and δQ̂ (Equation 2.95, Equa-
tion 2.96 and Equation 2.97)using matrices. First, we define a forcing vector that includes all
the fluctuation sources:

f̂ (ω) :=



δâin,1(ω)
δâ†in,1(ω)
δâin,2(ω)
δâ†in,2(ω)
δâin,ℓ(ω)
δâ†in,ℓ(ω)
δ∆(ω)
P̂in(ω)


(2.107)

We can write the positon fluctutations (Equation 2.97) in vector dot-product form:

δQ̂ =
[
χQ(ω)

]⊺
· f̂ , (2.108)

where (. . .)⊺ indicates the tranpose matrix and:

χQ(ω) :=
√

2gχm,opt(ω)



−√κ1χc(ω)
−√κ1χ

∗
c(−ω)

−√κ2χc(ω)
−√κ2χ

∗
c(−ω)

−√κℓχc(ω)
−√κℓχ∗c(−ω)

iα[χ∗c(−ω)−χc(ω)]√
Γm


. (2.109)
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Similarly, we can rewrite the cavity field fluctuations in matrix form:(
δâ(ω)
δâ†(ω)

)
= Λa(ω) · f̂ (ω) (2.110)

where Λa(ω) is a 2× 8 matrix defined as:

Λa(ω) := Λ′a(ω)− i
√

2g

 χc(ω)
[
χQ(ω)

]⊺
−χ∗c(−ω)

[
χQ(ω)

]⊺ (2.111)

Λ′a :=
(√
κ1χc(ω) 0

√
κ2χc(ω) 0

√
κℓχc(ω) 0 iχc(ω)α 0

0
√
κ1χ

∗
c(−ω) 0

√
κ2χ

∗
c(−ω) 0

√
κℓχ

∗
c(−ω) −iχ∗c(−ω)α 0

)
(2.112)

Now that we have solved for the intracavity fields, we can find the output fields. The input-
output relations in matrix form are:

δâout(ω) :=



δâout,1(ω)
δâ†out,1(ω)
δâout,2(ω)
δâ†out,2(ω)
δâout,ℓ(ω)
δâ†out,ℓ(ω)

0
0


=

I6×6
0 0
0 0

 · f̂ (ω)−



√
κ1 0
0

√
κ1√

κ2 0
0

√
κ2√

κℓ 0
0

√
κℓ

0 0
0 0

︸         ︷︷         ︸
:=K

·
(
δâ(ω)
δâ†(ω)

)
, (2.113)

where the vector âout has been padded with zeros so that in matches the dimensions of f̂ .
Finally, we can write the outputs as a linear transform of the inputs by inserting Equation 2.110:

δâout(ω) = Λ(ω) · f̂ (ω), (2.114)

where:

Λ(ω) :=

I6×6
0 0
0 0

−K ·Λa(ω). (2.115)

It will be convenient for the next sections to find the fluctuations of the output quadratures.
Using the definitions of quadratures fluctuations found in Equation B.2, we write in matrix
form:

δX̂out(ω) :=



δX̂out,1(ω)
δŶout,1(ω)
δX̂out,2(ω)
δŶout,2(ω)
δX̂out,ℓ(ω)
δŶout,ℓ(ω)

0
0


= C(∆) · δâout(ω) = C(∆)Λ(ω)︸      ︷︷      ︸

ΛX (ω)

·f̂ (ω) (2.116)
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where we have introduced a quadrature rotation matrix C(∆), where the dependence on detun-
ing through the angle of the steady-state reflected field:

C(∆) :=
1
√

2



e−iθout,1 eiθout,1

−ie−iθout,1 ieiθout,1

1 1
−i i

1 1
−i i

0
0


. (2.117)

with:

eiθout,1 =
κ
2 −κ1 − i∆̄√(
κ
2 −κ1

)2
+ ∆̄2

. (2.118)

The PSDs and cross-PSDs of the output fields can be expressed in a compact manner by defining
a PSD N ×N matrix S d̂(ω) for a vector of operators d̂ =

(
d̂1, d̂2, . . . , d̂N

)⊺
:

S d̂(ω) := lim
τ→∞

1
τ

〈[
d̂τ (ω)

]†
·
[
d̂τ (ω)

]⊺〉
=



Sd̂1d̂1
Sd̂1d̂2

. . .
Sd̂2d̂1

Sd̂2d̂2
. . .

...
...

. . .
. . .

...
...

. . . Sd̂N−1d̂N−1
Sd̂N−1d̂N

. . . Sd̂N d̂N−1
Sd̂N d̂N


. (2.119)

The PSD matrices of the ouput and input are thus linked through:

S âout (ω) = Λ∗(ω) ·S f̂ (ω) · [Λ(ω)]⊺ (2.120)

where the Λs-bread sandwich of S f̂ is due to the property of the transpose (AB)⊺ = B⊺A⊺. The
form of S f̂ will depend on the noise characteristics of our input beam, assuming no correlation
between the different channels, the general form of the PSD matrix when pumped from only
one channel is4:

S f̂ (ω) =



Sâin,1âin,1
(ω) Sâin,1â

†
in,1

(ω)

Sâ†in,1âin,1
(ω) Sâ†in,1â

†
in,1

(ω)

0
1

0
1

S∆∆(ω)
SP̂inP̂in

(ω)


, (2.121)

where we have used that the input port 2 and the loss channel are vacuum, whose fluctuations
have PSDs5:

Sâ†vacâ
†
vac

(ω) = 1 Sâvacâvac
(ω) = Sâvacâ

†
vac

(ω) = Sâ†vacâvac
(ω) = 0. (2.122)

4For convenience, we write SÔÔ(ω) when referring toSδÔδÔ(ω).
5These are obtained from the correlation functions of the ladder operators of a thermal field

〈
â†in(t)âin(t′)

〉
= ninδ(t−

t′),
〈
âin(t)â†in(t′)

〉
= (nin + 1)δ(t − t′),

〈
âin(t)âin(t′)

〉
=

〈
âin(t)âin(t′)

〉
= 0.[33]
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We have kept the PSDs of the input port general because the laser used to feed the cavity might
have classical noise above the quantum limit. We can include a small phase noise contribution
δφ(t)≪ 1 in the following manner:

âin,1 = αin,1eiδφ + δâvac
in,1 ≃ αin,1 + iαin,1δφ+ δâvac

in,1︸              ︷︷              ︸
δâin,1

, (2.123)

we can then calculate the PSDs of the input ladder operators and write a new PSD matrix:

S Phase noise
f̂

(ω) =



|αin|2Sφφ(ω) −
(
α∗in

)2
Sφφ(ω)

−(αin)2Sφφ(ω) 1 + |αin|2Sφφ(ω)
0

1
0

1
S∆∆(ω)

SP̂inP̂in
(ω)


. (2.124)

2.6.5 Optomechanical squeezing

An output field quadrature of our optomechanical system can have fluctuations below that of
a coherent beam, such beam is said to be squeezed in that quadrature. Squeezing is possible
because the uncertainty inequality between X̂ and Ŷ allows for a decrease in fluctuations in one
quadrature as long as we increase the fluctuations in the orthogonal quadrature. Optomechan-
ical squeezing arises because the membrane is moved according to the quadrature fluctuations
of the cavity field while at the same time it modifies the phase quadrature of the same field.
Due to the coherent nature of the interaction, it establishes correlations between the quantum
fluctuations.

Intuitively, measurable optomechanical squeezing requires that the random radiation pres-
sure due to shot noise is larger than the classically stochastic thermal force. In that way, phase
fluctuation in the intracavity light caused by mechanical motion will mostly correlate with its
amplitude fluctuations rather than thermal fluctuations. Thus, the condition for the presence
of optomechancal squeezing is related to the following question: when are the quantum fluctu-
ations of light the main source of fluctuation in the evolution of the mechanical oscillator? We
discussed this question in Subsection 2.2.3, coming to the conclusion that for a given oscillator
with a certain mass and dissipation rate, it depends on the amount of optical power reflecting
off the oscillator. In turn, this motivated using optical cavities. We can tackle this question
again with the theory of cavity optomechanics that we have developed in this section.

First, we must find the force applied by the cavity’s field, which can be obtained through the
derivative of the optomechanical Hamiltonian:

F̂opt = −dĤ
dq

= −
ℏg0

xz.p.
â†â, (2.125)

which has the following symmetrized PSD:

S̄F̂optF̂opt
(Ωm) ≃ ℏ2

x2
z.p.

4g2

κ
1

1 + 4∆2

κ2

(2.126)



40 CHAPTER 2. THE THEORY OF OPTOMECHANICAL INTERACTION

where we have considered the sideband unresolved regime Ωm≪ κ.6 The symmetrized thermal
force expressed in a similar manner is [33]:

S̄FthFth
(Ωm) =

ℏ2

x2
z.p.

Γmnth. (2.127)

The ratio of the forces is then:

S̄F̂optF̂opt
(Ωm)

S̄FthFth
(Ωm)

= Cq ·
1

1 + 4∆2

κ2

, (2.128)

where we have introduced the commonly used quantum cooperativity:

Cq =
4g2

κΓmnth
=
C
nth

, (2.129)

where C is the cooperativity introduced previously. Thus, our criterion for quantum dominated
optomechanical interaction is:

Cq ≥ 1 +
4∆2

κ2 (2.130)

when the laser is close to resonance:
Cq ? 1. (2.131)

In order to briefly and qualitatively discuss optomechanical squeezing, we calculate the
PSDs of the output quadratures numerically. We do this by inserting Equation 2.116 in Equa-
tion 2.120:

S X̂out
(ω) = [ΛX(ω)]∗ ·S f̂ (ω) · [ΛX(ω)]⊺ (2.132)

In Figure 2.10, we see the PSD of different quadratures of the reflected and transmitted beam
normalized to shot-noise7. We see how, in a high quantum cooperativity situation, optome-
chanical squeezing appears in the left or right side of the mechanical signal peak, depending
on the quadrature measured. From the simulations, we see that the quadrature that presents
maximum squeezing depends on the detuning ∆̄ as well as if we are considering the reflected
or the transmitted beam.

2.7 Detection schemes

In this section, we describe two different light detection schemes in the context of cavity op-
tomechanics. We will start with the simplest: direct detection, then move to phase referenced
detection: the balanced homodyne detector. A description of unbalanced (single-detector) ho-
modyne can be found in Appendix D. We will not describe heterodyne detection, which is a
very important measuring scheme as it allows for the measurement of the negative frequency
region of the PSD, which is solid evidence of quantum behavior. We refer the reader to [33] for
a treatment of heterodyne detection in the context of cavity optomechanics.

6To obtain Equation 2.126, expand the intracavity field into steady state and fluctuations â†â ≃ α2 + α(δâ† + δâ),
use the Fourier space equations for δâ,δâ† (Equation 2.95 and Equation 2.96) neglecting the effect of the mechanics to
obtain the PSD of â†â

7The PSD of an arbitrary quadrature can be found using Equation C.13: SX̂ψ X̂ψ = SX̂X̂ cos2ψ + SŶ Ŷ sin2ψ +

2cosψ sinψRe
{
SX̂Ŷ

}
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Figure 2.10: Power spectral density of an arbitrary quadrature X̂ϕ of the reflected
and transmitted field. Note the asymmetric color bar. Blue regions present
squeezing, white represents fluctuations associated with a coherent beam and
red above that (they contain mechanical signal). The plots have been obtained
using Equation 2.149, with Ωm = 2π · 1.14MHz, Q = 108, κ = 2π · 20MHz and
an input power resulting in Cq = 1.75 at a detuning of ∆̄ = κ

2
√

3
. The simulation

is done at room-temperature with no additional detuning noise or classical laser
noise (S∆∆ = 0, and SX̂inX̂in

= SŶinŶin
= 1

2 ,SX̂inŶin
= i

2 )
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2.7.1 Direct detection

In direct detection, our beam of interest is directly sent to a photodiode. In our fluctuation
picture, the photocurrent î is given by the amplitude quadrature:

î = |â|2 ≃ |α|2 +
√

2|α|δX̂, (2.133)

the signal fluctuates around a large DC component. What we record in an oscilloscope or spec-
trum analyzer is a classical stochastic variable i, the result of the non-reversible measurement
of î in the photodetection process [33]. A result of Glauber’s theory of photodetection is that
the PSD of i is actually related to the symmetrized PSD of î, fulfilling that the PSD of a real
stochastic variable must be symmetric. In the linearized approximation:

Sii(ω) ≃ S̄î î(ω) :=
Sî î(ω) + Sî î(−ω)

2
. (2.134)

It is thus straight-forward to find the spectrum of direct detection of the output fields of the
cavity. Equation 2.149 can be used to find an expression for S̄X̂X̂ to obtain:

Sii(ω) = 2|αdet|2S̄X̂detX̂det
(ω). (2.135)

To model inefficiencies in the detection scheme, we model the losses as a beamsplitter of trans-
mission η, where we have lumped together both the collection of light from the system and the
quantum efficiency of the detector.

Sii(ω) = 2η|αout|2
[1− η

2
+ ηS̄X̂outX̂out

(ω)
]
. (2.136)

Due to direct detection being sensitive only to amplitude, it can only perform linear measure-
ment of the mechanical motion when the cavity is driven at a ∆ , 0 detuning. Despite this
limitation, direct detection can allow for measurement of optomechanical squeezing as it usu-
ally is optimal close to the amplitude quadrature. This is demonstrated in Figure 2.11. The
equation above shows how losses in the measurement can easily remove any trace of squeezing,
pulling the fluctuations back towards the shot-noise level of 1

2 .

2.7.2 Balanced Homodyne Detection

The Balanced Homodyne Detector (BHD) is the most commonly used interferometric detection
scheme in quantum optics. A BHD consists in mixing a signal with a strong local oscillator
(LO) in a 50:50 beamsplitter. The two outputs are measured in two photodiodes in subtractive
mode. The signal of the BHD is proportional to the quadrature of the signal given by the
relative phase between the signal and the LO. Due to the subtraction of the two photocurrents,
the BHD is immune to classical amplitude noise of the LO. The mathematical description of
the BHD that one finds in the literature usually assumes a quantum-limited laser source, but
as mentioned earlier, the phase noise of most real lasers is well above quantum fluctuations. In
this section, we will consider the effects of a noisy laser.

Before proceeding to deal with a noisy laser, let us look at the standard approach to the
BHD. The signal beam âs and the LO beam âLO enter at different ports of a 50:50 beamsplitter.
The output fields â+ and â− are given by:

â± =
1
√

2
(âLO ± âs), (2.137)
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Figure 2.11: Symmetrized power spectral density of the amplitude quadrature
X̂ of the transmitted field at different detunings, which is directly proportional
to the one detected in direct detection. Note the asymmetric color bar. Blue re-
gions present squeezing, white regions have coherent beam fluctuations and red
contain mechanical signal. The plots have been obtained using Equation 2.149,
with Ωm = 2π · 1.14MHz, Q = 108, κ = 2π · 20MHz and an input power result-
ing in Cq = 1.75 at a detuning of ∆̄ = κ

2
√

3
. The simulation is done at room-

temperature with no additional detuning noise or classical laser noise (S∆∆ = 0,
and SX̂inX̂in

= SŶinŶin
= 1

2 ,SX̂inŶin
= i

2 )

creating the photocurrents:

î± = |â±|2 =
1
2

(
|âLO|2 + |âs |2 ± â†LOâs ± âLOâ

†
s

)
. (2.138)

We linearize the expression by splitting both beams into field and fluctuations âLO = αLO+δâLO,
âs = αs + δâs, and writing in terms of quadratures:

î± =
|αLO|2

2
± |αs |

2

2
± |αLO||αs |cos(θLO −θs)︸                                            ︷︷                                            ︸

i±DC

+
1
√

2
|αs |δX̂s +

1
√

2
|αLO|δX̂LO︸                             ︷︷                             ︸

Direct detection of amplitude fluctuations

+

± 1
√

2
|αLO|δX̂

θLO−θs
s︸                ︷︷                ︸

LO projects signal quadratures

± 1
√

2
|αs |δX̂

θs−θs
LO︸            ︷︷            ︸

Signal projects LO quadratures

+

+
|δâLO|2

2
+
|δâs |2

2
± 1

2

(
δâ†sδâLO + δâ†LOδâs

)
︸                                               ︷︷                                               ︸

Second order

(2.139)
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Figure 2.12: General scheme for balanced homodyne detection. Both the local
oscillator and probe beams are sourced from the same laser.

The common approximations done to model quantum optics experiments starts by discard-
ing second order fluctuations terms. Then, assuming the the LO has a power much larger than
that of the signal, |αLO| ≫ |αs |, we discard terms that depend exclusively on |αs |. The next sim-
plification usually follows from considering the LO a classical coherent beam âLO ≃ αLO, this
seems reasonable from the point of view of the steady-state/fluctuation split8. In this case, we
have a DC component

iDC = 2|αLO||αs |cos(θLO −θs), (2.140)

that we can use to lock the phase between the LO and the signal, and the flcutuation of the
ficticious photocurrent difference operator:

î =
√

2|αLO|δX̂
ψ
s (2.141)

ψ := θLO −θs. (2.142)

This expression is valid for an ideal experiment, in practice there are technical limitations. To
start with, the alignment between the LO and the signal beam is never perfect, manifesting
in a reduced contrast of the interference fringes. The parameter that measures the contrast is
the visibility VIS = imax−imin

imax+imin
, which is generally lower than the visibility with perfect alignment

VISperfect = 2
√
iLOis

iLO+is
. The visibility factor V = VIS

VISperfect
∈ [0,1] is the fraction of the LO that the

signal actually interferes with [47]. The second imperfection is the limited quantum efficiency
ηd of the photodiodes used, which is the fraction of photons reaching the photodiode that are
converted to electrons. As we did with direct detection, we can model the limited ηQE by
considering a beam-splitter of field transmission ηQE in front of an ideal detector. We consider
that both detectors have the same quantum efficiency. The final expression for the PSD of the
homodyne signal is [48, 49]:

S̄ii(ω) = 2ηQE|αLO|2
[1− ηdet

2
+ ηdetS̄δX̂ψs δX̂

ψ
s

(ω)
]
, (2.143)

where similar to direct detection, the PSDs of classical signals must be symmetric. η = ηQEV2

combines the two inefficiencies.

We now have a model for BHD with a coherent LO, but it does not include any contribution
of classical laser noise. Most experiments use the same laser to generate an LO and a probe

8However, the terms |αLO|δX̂LO appearing in the photocurrent are of the same order of the terms sensitive to our
signal |αLO|δX̂s , thus discarding the LO fluctuations while keeping the signal fluctuations is not justified. This debate is
related to two different pictures about homodyne detection: when we block the signal field, the fluctuations observed
are due to the vacuum fluctuations[45] or due to the actual shotnoise of the LO[46], which is the formulation that I
used. In the lab, we just calibrate our spectrum by considering the first point of view.
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beam that interacts with a system. The output of that system will be our signal, which rejoins
the LO at the BHD, like shown in figure Figure 2.12. Therefore, we need to model the whole
experiment to understand the classical correlations between the signal and local oscillator.

We can consider the quantum and classical fluctuations separately due to the linear approx-
imation, in other words, we can write:

î± = î±,q + ĩ±,c, (2.144)

where î±,q includes all terms depending on quantum fluctuations and ĩ±,c contains exclusively
classical noise. Additionally, it is safe to assume that the classical and quantum noise are un-
correlated, in that case:

S̄î î(ω) = S̄îq îq (ω) + S̄icic (ω). (2.145)

This result is convenient for calculating the measurement record of our optomechanical system
with a BHD. First, we have to split our probe beam into quantum fluctuations and classical
phase noise. We only consider phase noise as it is the most persistent noise in commonly used
lasers9. Our probe beam inherits the phase noise δφ(t) of our laser:

âprobe(t) = αprobe + iαprobeδφ(t). (2.146)

In the convention used in the previous section, the probe enters through port 1 of the cavity.
Thus the input/forcing vector f̂ (ω) is:

f̂ (ω) = f̂ q(ω) + f̃ c(ω) =



δâin,1(ω)
δâ†in,1(ω)
δâin,2(ω)
δâ†in,2(ω)
δâin,ℓ(ω)
δâ†in,ℓ(ω)
δ∆(ω)
P̂in(ω)


+



iαprobeδφ(ω)
−iα∗probeδφ(ω)

0
0
0
0
0
0


. (2.147)

We have split f̂ into a quantum and a classical contribution. The subscript c can also stand
for “correlated”, because the key advantage of this separation is that f̂ q is not correlated with

the LO, while f̃ c is. Using Equation 2.116, we can find the output fluctuations as a function of
f̂ . Instead of considering the output beam is the BHD signal, we will account for loss before
the cavity output reaches the BHD. This is done by mixing the output field with vacuum at a
beamsplitter of transmission η:

δX̂ s(ω) =
√
ηδX̂out(ω) +

√
1− ηδX̂v , (2.148)

where v̂ is a column vector of vacuum fluctuations.

It is now straight-forward to find the quantum part of the BHD signal S̄îq îq (ω). First, we find
the PSD matrix of the output quadratures:

S
δX̂

ψ
out,q

(ω) = [ΛXψ (ω)]∗ ·S f̂ q (ω) · [ΛXψ (ω)]⊺ (2.149)

9A lot of lasers, in particular fiber lasers, contain a higher degree of classical amplitude noise than phase noise.
Amplitude noise can be reduced close to the shot noise using a feedback system (usually referred to as a noise eater),
an example can be found in [50] or being used in a cavity optomechanics experiment [43]. Similar approaches can be
used to remove phase noise [51], we will discuss phase noise in more detail in Section 6.3
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notice that we use the PSD matrix of the quantum contribution to the f̂ vector. We have defined
the arbitrary quadrature version of the matrix ΛX introduced in equation Equation 2.116:

ΛXψ (ω) :=
1
√

2



e−i(θout,1+ψ) ei(θout,1+ψ)

−ie−i(θout,1+ψ) iei(θout,1+ψ)

e−iψ eiψ

−ie−iψ ieiψ

e−iψ eiψ

−ie−iψ ieiψ

0
0


·Λ(ω). (2.150)

Then we can obtain the PSD of the signal beam after our cavity output suffers losses:

S
X̂
ψ
s,q

(ω) = ηS
X̂
ψ
out,q

(ω) +
1− η

2



1 i
−i 1

1 i
−i 1

1 i
−i 1

0
0


, (2.151)

Finally we obtain the BHD signal associated with the quantum fluctuations using Equation 2.143:

S̄îq îq (ω) = 2ηQE|αLO|2
{

1− ηdet

2
+ ηdet

1− η
2

+ ηηdet

[
S̄
X̂
ψ
out,q

(ω)
]
k,k

}
, (2.152)

where
[
S̄
X̂
ψ
out

(ω)
]

1,1
= S̄

X̂
ψ
out,1X̂

ψ
out,1

(ω) is the reflected field and
[
S̄
X̂
ψ
out

(ω)
]

3,3
= S̄

X̂
ψ
out,2X̂

ψ
out,2

(ω) is the

transmitted field.

With the quantum contribution identified, now we turn to the classical phase noise. We
follow a different approach, as we cannot consider the LO noiseless. The classical signal of a
BHD can be found to be:

δĩc =
√

2ηQEV
(
|αLO|δX̃

ψ
s + |αs |δX̃

−ψ
LO

)
, (2.153)

where I use the tilde to indicate that the fluctuations are purely classical. We cannot neglect
the term |αs |δX̃

ψ
LO because, in the case of phase noise, δỸLO ∝ |αLO|. The signal quadratures are

given by:

δX̃s,c(ω) =
√
ηδX̃out,c(ω) =

√
ηΛXψ (ω) · f̃ c(ω) =

√
ηΛXψ (ω) ·


iαprobe
−iα∗probe

0
...

 · δφ(ω), (2.154)

notice that we do not have to mix in the vacuum fluctuations, they have already been accounted
for in the quantum contributions. To accurately model the experimental set-up, we will con-
sider a delay τ in the LO path. In frequency space, the delay takes the following form:

δX̃
ψ
LO,c(ω) =

√
2|αLO|sin(ψ)e−iωτδφ(ω), (2.155)
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now we use this expressions to find the BHD signal:

δĩc =
√

2ηQEV
√
η|αLO|


ΛXψ (ω) ·


iαprobe
−iα∗probe

0
...



k

+
√

2
∣∣∣αout,k

∣∣∣sin(ψ)e−iωτ

δφ(ω), (2.156)

and its PSD:

S̄ĩc ĩc (ω) = 2ηQEηdetη|αLO|2

∣∣∣∣∣∣∣∣∣∣∣∣
ΛXψ (ω) ·


iαprobe
−iα∗probe

0
...



k

+
√

2
∣∣∣αout,k

∣∣∣sin(ψ)e−iωτ

∣∣∣∣∣∣∣∣∣∣∣∣
2

S̄δφδφ(ω). (2.157)

that finishes our model for the BHD signal of a cavity optomechanical signal. We can use
S̄î î(ω) = S̄îq îq (ω) + S̄icic (ω) to fit our experiments.

Before wrapping up our discussion, I want to illustrate how the influence of phase noise
in our measurement depends on the delay between signal and LO. To do so, let us remove
the optomechanical system from the probe path. This can be done by setting Λ(ω) = I and
αs =

√
ηαout =

√
ηαprobe and inserting into Equation 2.157:

S̄
Delay
ĩc ĩc

(ω) = 4ηQEηdetη|αLO|
∣∣∣1− e−iωτ

∣∣∣2S̄δφδφ(ω), (2.158)

For no delay τ = 0, the phase noise contribution vanishes. This is obvious, if there is no delay
in either path, both beams arrive a the detector with the same phase and whatever beam we
choose as phase reference, the phase of the other is zero. With a delay, we can measure the
phase noise of our laser(see Subsection 5.4.2 for more details and an actual measurement).
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Chapter 3

A low-noise micro-cavity for
quantum optomechanics

The main goal of this work has been to build a cavity optomechanics experiment that exhibits
quantum behavior at room temperature. Throughout this chapter, we will explain how we
designed and built a low-noise optical micro-cavity that tackles the main challenges found in
the way towards room-temperature optomechanics.

3.1 Introduction

What does it exactly mean for the system to be in the quantum regime at room-temperature?
We will use the following straight-forward criterion:

A system is in the quantum regime when quantum fluctuations play a bigger role than
thermal fluctuations in determining the statistics of our system.

In such situations, our classical models of the system will start to fail. If we look at the different
physical subsystems forming a cavity optomechanics system, we can translate the criterion into
mathematical conditions. First, the light trapped in the optical cavity, its amplitude variance
when thermalized is: 〈

∆X̂2
〉

th
=Nth +

1
2
. (3.1)

The one-half ultimately originating in the fact that amplitude and phase are non-commuting
observables. An optical field in the near-infrared (around 200THz) has a thermal occupation
Nth ≪ 1

2 when thermalized to T ≃ 300K, thus, its statistics are dominated by the quantum
fluctuations. Prior to pumping the cavity with light, we can safely assume that its optical mode
is in the ground-state, as well as the input channels. As long as we use quantum limited sources
of light, we can keep our optical degrees of freedom in the quantum regime.

Contrary to light, the mechanical resonator imposes a challenge due to its low mechanical
frequency. As we discussed in Subsection 2.2.1, the variance in the position of a thermalized
mechanical resonator is given by: 〈

q̂2
〉

= q2
z.p. + 2q2

z.p.nth. (3.2)

At first glance, it seems impossible to reach the quantum regime for a given frequency with-
out modifying the environment temperature. The trick lies in that, through various cooling

49
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schemes, one can lower the effective temperature of the resonator while keeping the environ-
ment at room-temperature. In other words, we can prepare the resonator in a Gaussian mixed
state resembling that of a thermal state at temperature Teff which is lower than T . If such state
has an effective occupation of n̄ phonons, the measured variance on its position will mostly be
caused by quantum fluctuations as long as:

n̄ ≤ 1
2
. (3.3)

We can also apply the criterion to the optomechanical interaction itself. In our previous discus-
sion about optomechanical squeezing, we found that the interaction is quantum dominated as
long as:

Cq =
4g2

κΓmnth
≥ 1 +

4∆2

κ2 (3.4)

The quantum cooperativity is a great figure of merit for the actual performance of an experi-

ment run, while the single-photon cooperativity C0 = 4g2
0

κΓm
considers only the intrinsic parame-

ters of our optomechanical apparatus.

Faced with the task of building a MIM system that can reach the quantum regime at room-
temperature, we must be careful in adjusting the parameters that are under our control. In the
following subsections, I discuss the fundamental arguments for choosing certain parameters as
well as the technical caveats that must be considered in our design decisions.

3.1.1 The length of the cavity

If the cavity is built with mirrors of a certain finesse, the quantum cooperativity is independent
of cavity length for a given input power ṅin. This can be seen from the following dependencies:

Cq ∝
g2

0nc

κ
g0 ∝

1
L

nc ∝
ṅin

κ
κ ∝ 1

L
=⇒ Cq ∝ ṅin (3.5)

In theory, it seems that shorter or longer cavities have the same performance. In practice,
shorter cavities are better when we consider technical noises. In particular, the effects of laser
frequency noise are mitigated in shorter cavities. Looking back to the equations of the intra-
cavity field (Equation 2.95 and Equation 2.96), we find the following dependency on detuning
noise δ∆:

SX̂X̂ ∝ ncS∆∆ (3.6)

while the transduction of position to light scales with:

SX̂X̂ ∝ g
2
0ncSQ̂Q̂. (3.7)

Ultimately, the ratio of mechanical signal to frequency noise signal detected in the output
field will scale proportional to g2

0 . Notice that shorter cavities do not mitigate mechanical mir-
ror noise. Mirror motion will couple in the same manner as our resonator, although through a
different set of g ′0. The coupling rates of the mirror modes also scale inversely with the length,
thus, the signal-to-mirror noise ratio is independent of cavity length.

3.1.2 The mirror reflectivity

The quantum cooperativity is inversely proportional to the cavity linewidth κ, which favors
high-finesse cavities. However, one must not succumb to the temptation of using mirrors with
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the highest reflectivity possible. First, it is favorable for the two mirrors of the cavity to have dif-
ferent reflectivities. Measurement should be performed on the light exiting the cavity through
the less reflective (more transmissive) mirror. Second, the rate κk associated with the mea-
surement port should be significantly larger than the loss rate κℓ so that the cavity remains
over-coupled. This is crucial in MIM systems. Modern distributed Bragg reflector coatings
have low losses compared to their transmissivities, making it easier to be in an over-coupled
or critically-coupled regime if no other losses mechanisms are present. But when a thin mem-
brane is inserted in between, the main loss channel might become the sub-optimal parallelism
between membrane and mirrors or optical absorption.

3.1.3 Tunability

In a MIM system, g0 depends on the equilibrium position of the resonator respect to intra-
cavity field nodes. We have two options in order to optimize g0: we either move the resonator
or we adjust the field’s nodes by changing the resonant wavelength. Although possible, having
control of both position and tilt of the resonator while it sits inside the cavity is a big exper-
imental challenge. One needs a 5-axis stage that is both compatible with ultra-high vacuum
and has enough mechanical stability. An equivalent and easier option is to mount the mirrors
on piezoelectric actuators (PZT). The PZTs are mounted such that the mirrors move along the
cavity’s axis. By moving both mirrors in the same direction and by the same amount, one can
keep the cavity resonant with any given laser frequency while optimizing g0. These solutions
allow the optimization of g0 for any set wavelength. This is a requirement for certain types
of experiments. For example, in hybrids experiments, for example, entangling states of an ul-
tracold atomic gas to a cavity optomechanical system, the wavelength of the light is set by the
atomic system and the optomechanical system must adjust.

If the experimental requirements allow for wide-tunability of the laser’s wavelength, a com-
pletely rigid optomechanical system can be used. The different optical resonances will have
different g0 as the position of the field nodes and anti-nodes changes respect to the membrane.
The laser can be tuned to a resonance that ensures high enough g0. In general, it is not guaran-
teed that any of the available optical resonances ensures the largest g0. How close to the system
can get to the global maximum depends on the FSR of the cavity, a smaller FSR allows for more
granular adjustment.
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Figure 3.1: The membrane-in-the-middle microcavity optomechanical system.
Drawings to scale of the four elements of our system: a bottom mirror silicon
chip, a silicon chip with a suspended silicon-nitride membrane, Kapton tape used
as a spacer and a top fused silica mirror where a concave mirror has been fabri-
cated.
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3.2 Overall description of the experiment

We have built a high-finesse micro-cavity based on structured substrates, its overall geometry
can be seen in Figure 3.1. It contains no moving parts: the cavity is based on a stack of planar
substrates with sufficient parallelism.

The base is a 20mm × 20mm silicon chip with a thickness of 1150µm. The chip serves si-
multaneously as a holder for another chip containing a suspended silicon-nitride membrane,
and as one of the mirrors of the optical cavity. We call this the bottom mirror because the mem-
brane chip rests on it, held only by gravity. To ensure a good fit, the bottom mirror has been
sculpted with a negative of the membrane chip. As both are fabricated with Potassium Hydrox-
ide (KOH) etching1, the walls are perfectly co-planar along the (111) crystalline plane. Both
chips have been fabricated from double-sided polished wafers, ensuring that they rest on each
other perfectly parallel. At the center of the bottom mirror, a mesa has been left by protecting
a 1mm-diameter region from the KOH etch. The top surface of the mesa, which retains the
original wafer thickness, sits approximately 68µm away form the membrane. The surface of
the mesa is still pristine as it has been left untouched by the etching process. After coating with
low-loss distributed Bragg reflector2 with a target transmission of 10ppm at 1550nm, the mesa
becomes one of the high-finesse mirrors of our cavity. The bottom surface is coated with an
anti-reflective coating.

On the edges of the top side of the bottom mirror, polyimide tape (Kapton) is placed in or-
der to be used as a spacer. One layer of Kapton tape provides ≈ 60µm of thickness. We chose
Kapton tape because it is widely available and compatible with Ultra High Vacuum (UHV). We
have also considered using polymide film (same as Kapton tape but with no adhesive) and alu-
minium foil[52], but we have found no problems with the presence of adhesive and appreciated
its convenience when building the cavity. We have settled on using two layers of Kapton tape
for a total thickness around 120µm.

On the Kapton tape spacer sits our top mirror. The top mirror is a square 24mm × 24mm
fused silica substrate with a thickness of 475µm. We chose fused silica so that we can machine a
concave micromirror template using the well established CO2 laser ablation technique[53]. The
fabrication is explained and characterized in detail in Chapter 4. We a ablate a ≈ 3µm deep
concave Gaussian-shaped dimple. Close to the center of the feature, its radius of curvature
is around 300µm. Features created through laser ablation have ultra-low roughness due to
the reflow of melted material and re-solidification under surface tension, it allows for ultra-
high finesse cavities after coating with an ulta-low loss high reflective coating with a target
transmission of 100ppm at 1550nm.

Contrary to prior microcavity MIM systems [52, 54, 55], we fabricate the concave micro-
mirror on a planar substrate instead of fabricating it on the tip of an optical fiber. We did so
in order for both bottom and top mirrors to be patterned with phononic crystals. The idea is
inspired by the work of Saarinen et al [52]. A pattern of cross-shaped holes can remove all
mechanical modes from an interval of frequencies. In the bandgap, there is, in principle, no
thermomechanical motion. In the following section, we will see how, without such phononic
shield, it would be impossible to resolve the ground-state motion of our resonator. The bottom
mirror was patterned using Deep Reactive Ion Etching (DRIE), which in contrast to KOH etch-

1Potassium Hydroxide (KOH) etching, is a highly anisotropic etching technique that etches along the normal of the
(111) crystallographic plane. In a (100) oriented wafer, it etches walls that form a 54.7deg angle with the surface.

2At the time of this work, it was challenging to find companies able to coat non-standard substrates with ultra-
low-loss high-reflective coatings, usually done with ion beam sputtering. All substrates used in this work were coated
by FiveNine Optics in Boulder, CO, USA. (www.fivenineoptics.com). LASEROPTIK in Garbsen, Germany ( www.

laseroptik.com) were also willing to coat our substrates.

www.fivenineoptics.com
www.laseroptik.com
www.laseroptik.com
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Figure 3.2: Assembled MIM system as seen through a microscope. The phononic
structure of the bottom mirror (highlighted in orange) can be seen through the
suspended SiN membrane. The pillars defining the phononic structure of the res-
onator can be seen thanks to their diffraction. The hexagonal defect on the mem-
brane’s phononic crystal is highlighted in green. The top mirror is positioned so
that the concave micromirror (highlighted in red) sits inside the membrane de-
fect, thus ensuring good mechanical-optical overlap. The phononic structure of
the top mirror can also be appreciated (highlighted in blue).

ing, it can etch vertical walls. The top mirror was etched at an external company3 using Laser
Induced Deep Etching (LIDE). LIDE is a novel process that starts with a high-power pulsed
laser ablating through-holes in a glass wafer. The second step is a wet etching technique that
has a higher etch rate at the surface of the walls of the through-holes.

The system, which is build by stacking the different layers, is held by clamping the top
mirror, spacer and bottom mirror against a holder using copper spring clips. There is no contact
between the top mirror and the membrane chip. This simple structure allows us to achieve
cavities as short as 126µm when loaded with a membrane, which makes it one of the shortest
MIM systems that can be found in the literature. To our knowledge, 43.8µm[55], 90µm[54]
and 95µm[52] are the three shortest MIM systems implemented, with ours being the fourth.

The finesse of the loaded cavity is above 60000 at wavelengths close to the coating optimum.
This is the finesse expected from the coating specifications, demonstrating the success of our
bottom mirror in ensuring parallelism between bottom mirror and membrane. At the same
time, we have shown that semiconductor grade polished silicon is a capable substrate for high-
finesse mirrors.

3.2.1 Assembly procedure

The assembly procedure has been improved iteratively through out the 10 months that the sys-
tem has been in operation. Through trial-and-error, we have identified an assembly procedure
that ensures short cavities with high-finesse. The procedure described below was identified just
two months before the realization of this report and we thus believe there is room for improve-

3Vitrion www.vitrion.com
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Figure 3.3: Photograph of the MIM system taken through the window of the
vacuum chamber.

ment.

1. Mounting the bottom mirror on the holder: Two stripes of Kapton tape are adhered to
the surface of our aluminium holder4 in order to create a smooth surface for the bottom
mirror to rest on. The bottom mirror is placed on that surface, to secure it, two additional
stripes of ≈ 60µm thick Kapton tape are placed along two parallel edges of the chip. The
Kapton tape is cut longer than the chip itself, with the ends of the strips adhered to the
holder. Thus, the tape acts as both a fixing mechanism for the bottom mirror and as a
spacer for the top mirror5. The process is repeated so that at each edge there are two
layers of Kapton tape with total thickness ≈ 120µm. One layer of Kapton is too thin, the
top mirror will crash against the membrane. When this happens, the membrane explodes
and the residue left in the mirror makes them unusable. A key discovery was that using
three layers of tape for a total thickness of≈ 180µm severely affects the finesse. We believe
this is due to the nature of our concave micro-mirrors. Longer cavities imply a larger beam
waist at the curved mirror, the beam waist at the curved mirror for a 120µm long cavity
is 9.1µm, which increases to 11.2µm for a 180µm long cavity. Due to the Gaussian shape
of our micromirror, a spherical-like profile is only ensured up to a certain distance from
the center, sufficiently large suffer clipping losses [56]. We suspect that the threshold for
clipping losses lies between the cavity mode sizes resulting from two and three layers.

2. Placing the membrane on the bottom mirror: The chips with our membrane resonators
are stored in a Gel-Pak container6. Particles on the chip’s surface around the membrane
are removed by adhering and de-adhering a piece of Kapton tape prior to removal from
the container. The elastomer that lines the container will capture any particles present at
the bottom of the chip. Once the chip is picked up, it is usually free of dust particles and

4A technical drawing of the holder can be found in Figure E.2
5Double sided Kapton tape should not be used to secure the bottom mirror to the holder. After the system was in

vacuum, we found it impossible to remove the bottom mirror from the holder without it fracturing.
6www.gelpak.com

www.gelpak.com
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is gently placed in the holder sculpted on the bottom mirror.

3. Placing the top mirror: This is the most critical step in the process due to the high risk of
the membrane breaking. Firsts attempts at building a 120µm long cavity failed due to the
membrane breaking once the top mirror was dropped in place. We ensured that it was not
caused by contact between the top mirror and the membrane by measuring the distance
between the membrane and the mesa mirror surface through interferometry. We believe
the rupture of the membrane is due to the sudden movement of air above the membrane.
We were able to place the top mirror in the two-layer spacer configuration by sliding it
from one side. The top mirror is placed offset > 10mm from the center so that it does not
cover the suspended membrane. It is then gently slid into position. It is critical that no
large (? 70µm) particles are present on the membrane chip surface because they will be
dragged into the suspended SiN membrane during this process.

4. Clamping and aligning: The micro-mirror is roughly placed on top of the membrane’s
mechanical mode by eye, then two small copper spring clips are tightened. They are
placed opposite of each other, pressing together the top mirror, spacer and bottom mirror.
With the help of a microscope, the top mirror is pushed using the end of plastic-tipped
tweezers so that the micromirror is centered on the membrane’s phononic crystal defect
that defines the mechanical mode. A microscope image of the system is shown in Fig-
ure 3.2. In a matter of minutes, we have ensured good overlap between the optical mode
and the mechanical mode.

5. Attachment to the vacuum chamber and final alignment: The holder with the MIM sys-
tem is attached using screws to a larger holder which is kept permanently in the vacuum
chamber (more details in Appendix E). The chamber is closed and the air evacuated. A
small USB microscope is used to observe the system again, usually, due to the vibrations
caused by tightening the vacuum viewport, the membrane chip has slid away from the
center, as there is some tolerance in the chip holder. At this point, the only way of re-
aligning the mechanical mode back to the center of the top micromirror is by shaking the
the system. In an intuitive process of hitting different sides of the vacuum chamber with
the handle of a screwdriver, the membrane is re-positioned. This process usually takes a
few minutes.

A photograph of the assembled system is shown in Figure 3.3.

3.3 The mechanical resonator: Density modulated phononic
membranes

The design and fabrication of high-quality mechanical resonators is not part of this work, but
rather the effort of my colleague Dennis Høj. The resonator used in this work is a Density
modulated Phononic Membrane (DPM) [20]. DPMs are the most recent iteration in suspended
stoichometric silicon-nitride (SiN) membrane resonators, which were used for the first time in
the year 2008 [57]. Stoichometric SiN, which is SiN grown on silicon, has a high tensile stress in
the order of 1GPa due to the lattice mismatch of SiN and silicon. The high stress enhances the
phenomenon of damping dilution, in which the mechanical quality factor of a tensile stressed
material is enhanced orders of magnitude higher higher than the intrinsic quality factor due to
internal friction (bending losses) [58].

DPMs fall in the category of phononic crystal engineered resonators. In order to create
an isolated mechanical mode, the stoichometric SiN membrane suspended on a silicon frame is
patterned with a pattern of features that gives rise to a phononic bandgap. Breaking the pattern
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Figure 3.4: Density modulated phononic membrane. A suspended 2.9mm ×
2.5mm× 20nm membrane of stoichometric silicon-nitride has been modified by
adding circular regions filled with ≈ 1µm tall nano-pillars. The regions, that
have a diameter around 86µm, form an hexagonal lattice with a lattice constant
around 220µm. The nano-pillars, which are ≈ 1µm thick, form a smaller hexag-
onal lattice with constant ≈ 2µm. Top left: Photograph of the membrane chip.
Top right: Drawing of the nano-pillar filled regions. Bottom: Finite-element
simulation of the fundamental mechanical mode, courtesy of Yincheng Shi.

at the center of the crystal, a single mechanical mode that is highly isolated from the substrate
is created [18]. Additionally, the crystal can be optimized to reduce the curvature of the central
mode curvature at edges of the membrane. This design technique, known as soft clamping, is
vital for reducing the intrinsic mechanical losses caused by curvature at membranes contour,
trampoline-like designs focus on reducing this kind of losses [16, 17, 19].

The innovation of DPMs lies in the manner the phononic crystal is defined. The main way
of inducing an acoustic bandgap has been through a pattern of holes, which in turn induce
pattern of stress. As their name indicates, Density modulated Phononic Membranes are based
on creating a pattern of effective density by adding mass. Replacing the holes in a traditional
phononic membrane with tall pillars is a bad strategy due to the large boundary length be-
tween the membrane and the wall at the pillar’s base. Instead, an effective pillar can be made
through a large quantity of nano-pillars, each with negligible contribution to bending losses. A
conventional picture and an illustrative drawing of a DPM is shown in Figure 3.4.

The central modes of DPMs can have frequencies in the range between 1.1MHz and 1.5MHz,
surrounded by a bandgap ≈ 400kHz wide. Their quality factors can reach up to 109 when
operated in Ultra High Vacuum (< 10−7mbar), withQ×Ωm factors that allow for tens of coherent
oscillations. The effective mass is around 2ng, resulting in zero point fluctuations around 2fm.
These are the relevant parameters for our experiment, the reader can find more details about
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Figure 3.5: Optomechanical coupling G in a cavity with a movable mirror. Each
dot represents a resonant wavelength, with its color proportional to the displace-
ment of the mirror respect to the original cavity length L = 126µm. The dashed
lines are the maximum G achievable for a 20nm thick silicon-nitride membrane.

the membrane and its fabrication in the paper by Høj et al [20].

3.4 Tuning the optomechanical coupling

We have decided to build a rigid system. Neither the mirrors nor the membrane can be moved
in order to make the cavity resonant with the laser or to place the membrane in a position of
high optomechanical coupling. We rely on finding a resonant wavelength with strong optome-
chanical coupling in the range of our laser. Our experiment’s main laser is a widely-tunable
diode laser (TOPTICA CTL 1550) with a tunability range from 1510nm to 1630nm. The nu-
merical calculations of optomechancial coupling G and linewidth κ presented in Section 2.5
are done using the parameters of our experiment. They show that we have enough wavelength
tunability to access strong G resonant modes.

Our initial experimental design included piezoelectric actuation of the top mirror, which
would require 3 independent 1.5mm×1.5mm×1mm piezoelectic chips (Thorlabs PA3BC). We
finally decided against this idea, but we will discuss it here in order to illustrate why the de-
cision was made. One advantage of cavity length adjustment is that we can make the cavity
resonant with any laser wavelength as long as the piezo displacement is greater than half the
wavelength, as a consequence, we can tune the cavity to a wavelength that ensures that the
membrane sits between a node and anti-node of the intracavity field, achieving maximum op-
tomechanical coupling. In Figure 3.5, we have numerically obtained G at different modes at
different cavity lengths to show that it is possible to optimize G. The simulation has been done
in the same way as in Section 2.5.

Ultimately, the increase in G obtainable by adjusting both wavelength and length and only
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adjusting the wavelength (which in the simulations shown in Figure 2.8 and Figure 3.5) is
around a 30% and does not warrant the technical challenge of operating three piezoelectic
chips in Ultra High Vacuum. Although we have not tested it, we can also predict that the
passive alignment between the bottom and top mirror would be much poorer, relying on the
tolerances of the three piezo chips used.

We also explored the idea of assembling the system in the rigid configuration, just as shown
in Figure 3.1, but allow for cavity length changes by pressing on the top or bottom mirror as
to contract the Kapton spacer. In order to achieve a tunability of one FSR, we would need
≈ 775nm of contraction of the ≈ 120µm thick spacer, a strain of ε = 6.5 × 10−3. Using the
Young modulus of Kapton E = 2.75GPa7 we find that the stress needed for such deformation
would be in the order of 20MPa, or 2000N on a 1cm2 area, which is in the order of the blocking
force of common piezoelectric actuators. The idea was not tested on the cavity due to time
constraints, but a Michelson interferometer was used to show that a piezoelectric ring of 15mm
outer diameter, 9mm inner diameter, 3.2mm thick and blocking force of 8450N (Thorlabs
PA44M3K) could deform two layers of Kapton film (total thickness 150µm) by more than 1µm.

3.5 Low-noise mirrors

The mirrors in our cavity have been engineered with phononic crystals in order to remove ther-
momechanical motion around the membrane’s frequency. The mechanical mode of the mirrors
in a MIM system form a canonical optomechanical system, with optomechanical coupling factor
G roughly 1/2|rm| larger than the membrane modes. Despite that, the single-photon coupling
rate g0 is much smaller due to the small zero-point fluctuations of the mirror modes. In this
section we show that, despite the fact that the thermomechanical motion of mirror modes is an
order of magnitude weaker due to the disparity in g0, mirror motion can still mask the signal
of our mode of interest when it is cooled to low phonon number occupations. We will then
describe in detail how we designed phononic crystal patterns that effectively reduce thermo-
mechanical motion of the mirrors.

3.5.1 Thermomechanical motion of regular mirrors

In order to illustrate the need for phononic patterning, we have simulated the thermomehcani-
cal motion of the top mirror in the absence of a phononic pattern. As described at the start
of the chapter, the top mirror is made from a fused silica square substrate with dimensions
24mm × 24mm × 0.475mm. We have found the thermomechanical motion spectrum through
the following steps:

1. We have found the eigenfrequencies and quality factors of the mirror modes using COM-
SOL Multiphysics®. To model how the mirror is clamped in the experimental set-up, the
boundary conditions are set so that two opposite sides of the substrate are fixed. We use
the material properties of fused silica and a assume a loss factor of 1 × 10−4 based on
values found in the literature[59]. 1200 eigenfrequencies are found, up to approximately
1.6MHz.

2. The effective mass of each mode is obtained using the methodology described in [60],
which consists in a volume integral of the density weighted with the mode’s normalized
shape.

7Manufacturer’s datasheet
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3. The PSD of thermomechanical motion in units of m2/Hz is found summing the responses
of each mode to the thermal force specified by the fluctuation-dissipation theorem.
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Figure 3.6: Thermomechanical motion of fused silica plate (blue) compared to
that of the membrane’s mode (orange) and the motion under strong feedback
cooling (red). The top plot is the motion itself and the bottom plot its effect
on the cavity frequency according to the optomechanical coupling of the end-
mirrors and of the membrane in a MIM configuration.

The single-sided power spectral density of the mirror thermomechanical motion at room tem-
perature is plotted in Figure 3.6a. For comparison, the spectrum of the central mode of a mem-
brane resonator is also plotted (Ωm = 2π · 1.143MHz,Q = 108,meff = 2ng), as well as the same
mode subjected to measurement-based feedback cooling down to n̄ ≃ 0.5[61]. In the experi-
ment, the position is inferred from its effect in cavity detuning. In Figure 3.6b, the PSD of
the cavity detuning is shown. We take into account that the mirror and membrane motion are
transduced into cavity detuning through different couplings Gmirror ≃ 9.35 × 1018Hzm−1 and
Gmembrane = 2.21× 1018Hzm−1 (obtained considering a 130µm long cavity and 20nm thick SiN
membrane).

From this data, we see how the mirror motion, which is well below the thermomechanical
motion of our resonator, can actually bury the signal when we approach its ground-state. By
taking the average mirror motion around the resonator frequency, we approximate the minimal
phonon occupation reachable through measurement-based feedback-cooling to be ≃ 2.
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Figure 3.7: Left: Simulated band structure of the phononic shield in the bottom
mirror and the top mirror. Both designs have been optimized to maximize the
bandgap around 1.3MHz. Right: Unit cell of the pattern used on both mirrors.

3.5.2 Design of patterned mirror substrates

In the same manner that a phononic crystal pattern defines the bandgap in our mechanical res-
onator, we can engineer one in our mirror. As commented previously, we have chosen materials
that can be etched across their total thickness, allowing for high contrast patterns. We have de-
signed a pattern of squares connected by rectangle beams8 inspired by the work of Yu et al [62].
The pattern is defined by three parameters: the length of the square’s side s; the length of the
beams connecting each square 2l and the width of the beams w. The acoustic bandgap resulting
from this parameters can be numerically estimated and therefore optimized. We use COMSOL
Multiphysics® simulations to optimize three designs around 1.1MHz, 1.3MHz and 1.5MHz for
each substrate (475µm of glass for the top mirror and 610µm of silicon for the bottom). We
simulate the unit cell with periodic Floquet boundary conditions, thus simulating an infinitely
extending pattern. We optimize using the default algorithm found in Python’s SciPy library
(scipy.optimize.minimize) [63].

Table 3.1 summarizes the results of the optimization process. The simulated band struc-
ture of the optimal design for 1.3MHz central frequency is shown in Figure 3.7. The resulting
bandgap in all configurations is around 500kHz wide, which is in the order of the bandgap of
the mechanical resonator.

3.5.3 Cavity noise reduction

We have checked the performance of our phononic shields in two independent measurements.
First, we have shaken the cavity using a piezoelectric actuator and measured the effect on the
output field. Second, we have measured the spectrum of the reflected phase with a balanced

8or cross-shaped holes if you hold a glass-half-empty point of view
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Top mirror (475µm SiO2) Bottom mirror (610µm Si)
1.1MHz 1.3MHz 1.5MHz 1.1MHz 1.3MHz 1.5MHz

s (µm) 1300 1170 1060 1756 1582 1546
w (µm) 100 101 107 100 210 138
l (µm) 55 53 53 58 105 58

Table 3.1: Optimized phononic crystal parameters for the different substrates at
different frequencies.

homodyne detector. Unfortunately, due to the the monetary and time cost of fabricating and
coating the mirrors, we do not have mirrors without phononic patterns. Ideally, we would have
built to identical unloaded cavities and compared the spectrum of the output field and extract
a noise reduction factor.

As stated, the first evidence of isolation has been the response of the cavity to mechanical
vibrations. The response has been measured by locking our laser to the slope of a resonance
of the empty cavity and recording the transmission signal. A small piezoelectric actuator is
attached to the holder of the cavity using a copper clamp. A signal generator sends sinusoidal
voltage signals to the actuator from 500kHz to 3MHz in steps of 1kHz, at each frequency, an
oscilloscope records the transmission signal. We use the standard deviation of the time trace
as a measure of cavity noise. Figure 3.8 shows a clear reduction of the cavity sensitivity to
vibrations in the span between 1MHz and 1.5MHz, matching well with our predictions. The

0.5 1.0 1.5 2.0 2.5
Excitation frequency (MHz)

100

101

C
av

it
y

no
is

e
(n

or
m

.)

Piezo. excitation
No excitation

Figure 3.8: Response of the empty cavity transmission signal to mechanical exci-
tation.

second evidence for the effectiveness of our design comes from homodyne detection of the
cavity’s reflection. The laser is locked to the side of the resonance. In this measurement we are
also slightly sensitive to laser phase noise (see Section 6.3). In the spectrum shown in Figure 3.9,
we clearly see a bandgap in the expected frequency region. We interpret the overall behavior
of the signal as the forest of peaks caused by mechanical modes of the mirrors superimposed to
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the phase noise.
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Figure 3.9: Power spectral density of the reflected phase signal of the cavity when
the laser frequency is locked at the side of the resonance (∆ = −0.84κ). The spec-
trum has been normalized to the shot-noise signal of the local oscillator.

3.6 The optical set-up

Although the optical set-up is adjusted depending on the experiment performed, Figure 3.10
shows a representative configuration based on collecting the reflected signal from the cavity. It
has been used to perform most of the characterization that will be presented in the next chapter.
The optical circuit starts at the laser, a diode laser (Toptica CTL 1550) with a tunability range
from 1510nm to 1630nm. The laser emits in free-space, but is coupled to polarization main-
taining (PM) fiber using an integrated coupling device provided by the manufacturer (Toptica
Fiberdock). The first element after the laser is an electro-optical modulator (EOM) that is used
for different calibrations, after that the beam is split into the probe beam and the local oscil-
lator (LO). The EOM is moved between before and after the split depending on the calibration
needed. If not in use, it is kept before the split as it acts as a linear polarizer.

The probe beam power is adjusted with an electronic voltage optical attenuator (EVOA),
its control voltage set by a digital-to-analog converter (DAC, NI Intruments) controlled by the
experiment computer (PC). A fiber circulator is used to direct the probe beam towards the
cavity. After the beam is collimated, a half-waveplate is used to adjust the polarization (this
is needed due to birefringence in the cavity, see Subsection 5.1.2). The beam is mode matched
to the cavity mode using an aspheric lens (Thorlabs A280TM-C, f = 18.5mm). The collimator,
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Figure 3.10: Schematic of the experimental set-up used to measure reflected light
and a picture of the part of the set-up that couples light into the cavity. The pur-
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tal to Analog Converter, PC: Experiment computer, PID: Proportional-Integral-
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(vacuum chamber).
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waveplate and lens are mounted in a cage, itself attached to a 3-axis translation stage. The
collimator is mounted on a kinematic mount, providing the 2 remaining degrees of freedom to
align the input beam to the cavity mode. The alignment procedure can be found in the section
that follows.

The beam enters the UHV chamber housing the cavity through a fused silica window with an
anti-reflective (AR) coating (more details about the vacuum set-up can be found in Appendix E).
The transmission of the cavity is redirected 90deg using a conventional mirror mounted on a
rigid (non-adjustable) holder. The transmitted beam exits the cavity through another AR-coated
window, it is then collimated using a f = 175mm lens and then focused using a f = 50mm lens
into a 13.4mm2 active area InGaAs amplified photodetector (Thorlabs PDA20CS2). The signal
is used to keep the laser frequency resonant. Both an oscilloscope and Proportional-Integral-
Derivative (PID) controller are available in the laser controller, which greatly simplifies data
acquisition. Reflected light from the cavity re-enters the circulator. PM fiber circulators are
polarizing elements, but due to the beam passing back and forth through the same half-wave
plate, the polarization upon reentering the circulator is the same as when exiting and is redi-
rected to a free-space homodyne detection set-up. The collection efficiency in this configuration
is around η ≈ 0.5

The LO beam has a similar optical circuit. The LO path also contains a circulator, which
is used to reflect the LO off a movable mirror. The mirror is mounted on a translation stage
retro-fitted with a piezoelectric chip stack (Thorlabs PC4QM), allowing for roughly 9µm of
displacement. First iterations of the set-up used a 3D-printed fiber stretcher, which works by
slightly changing the length of a coiled optical fiber using the force of a piezoelectric actuator.
We abandoned this system after noticing that it induced enough stress in the fiber to signifi-
cantly change the polarization of the light. Another advantage of the circulator set-up is that
it makes it easier to match the length of the probe and LO path, which is vital in reducing the
effects of laser phase noise. The length of the two paths is ultimately matched by adding a fiber
patchcord of the same length as the fiber EVOA used in the probe beam, as well as placing the
movable mirror at a similar distance from the circulator output to the distance between the
probe circulator and the cavity.

The outputs of the probe and LO circulators are collimated into free-space using match-
ing fiber collimators. The two beams are combined into the same path but with perpendicular
polarizations using two half-wave plates and a polarizing beamsplitter (PBS). A third wave-
plate is adjusted in order for a second PBS to act as a 50:50 BS. The outputs of the second PBS
are focused to the photodiodes of the balanced detector. We use a homemade balanced detector
equipped with high-quantum efficiency (ηQE ? 0.95) InGaAs photodiodes (Laser Components).
The photodiodes are set in a differential configuration so that the trans-impedance amplifier
converts the photocurrent difference into a voltage. The signal is split internally into a low-
frequency signal and a high-frequency signal, each signal goes through an additional amplifi-
cation stage. The circuit has two separate outputs, one for the low-frequency (DC) component
and one for the high-frequency (AC) component. The AC signal is recorded in a spectrum ana-
lyzer and the DC signal is used to control the relative phase between the probe and LO this is
done using a RedPitaya FPGA board with the PyRPL software [64]. The 0-2V output of the Red-
Pitaya is first amplified 3.75V/V using a homemade amplifier9, then further amplified to the
0-150V range of the piezoactuator using a high voltage amplifier with gain 20V/V (PiezoDrive
PDu150).

9A simple non-inverting amplifier using a Texas Instruments LM311 operational amplifier.
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3.6.1 Aligning to the microcavity
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Figure 3.11: Map of the collected power reflecting off the surface of the top mir-
ror. The image has been obtained by scanning the position of the coupling optics
using two motorized translation stages.

The task of aligning a beam to a cavity that is only a few hundreds microns in size appeared
daunting at first. We quickly found out that, thanks to the geometry of our system, the align-
ment is straight-forward and can be done in a matter of minutes. The optical set-up that was
described in the previous set-up is essentially a confocal microscope when the reflected power
is measured directly at the collected output of the circulator. We use the confocal filtering ef-
fect to our advantage in order to navigate through the features of the mirror. Basically, the tight
curvature of the micromirror will strongly scatter a beam that has been initially focused to the
surface of the top mirror. This can be seen in the image in Figure 3.11, which was obtained by
mounting the cage with the mode-matching optics to two motorized stages. Equipped with this
knowledge, we can align the system without motorized stages. In the following description, X
and Y are the axis co-planar with the mirror surface (parallel to the optical table) and Z is the
perpendicular. To help illustrate the procedure, the path of the beam’s focal spot is drawn in
Figure 3.12.

1. The focal point of the beam is placed outside the phononic structure domain. This can be
done by eye, then the Z stage, as well as the kinematic mount of the collimator, is adjusted
as to maximize light collection. The beam is now focused on the HR side of the top mirror.

2. While tracking the collected power, the X stage is moved towards the center of the mirror.
There is an easily noticeable drop in collected power when the beam is in between two
squares of the phononic pattern. Once 4 dips in power have occurred on our way to the
center, we are in the central column (there are 7 crystal cells). If no dips occur, the starting
position was along a the line of beams connecting the phononic cells. In that case, we do
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Figure 3.12: Path of the focal spot on the top mirror during the alignment proce-
dure. Each number correspond to the final position at each step of the alignment
process detailed in the main text.

a small displacement of Y and repeat.

3. The Y stage is moved so that the focal spot moves away from the center, regular dips in
power will be observed as we cross the phononic pattern. Once no more dips occur, we
are outside the pattern.

4. We now start moving back towards the center in the Y direction. Once 4 dips have oc-
curred the focal spot is on the central cell.

5. The beam is moved in the X direction away from the center until we see a dip in reflected
power, we are now in the space between two cells.

6. The beam is moved in the Y direction towards the center until we see an increase of
collected power, we are now on the beam connecting the two cells. We can verify that we
are in the beam if we keep moving in the same direction and observe a drop in power.
The collected power is maximized by adjusting the Y position to ensure we are centered
on the beam.

7. The X stage is moved towards the center until we notice the power decreasing. If the
power decreases in a smoother fashion than the dips previously observed, we have placed
the beam on the micromirror. The exact center of the micromirror is characterized by
a reflection peak because it is parallel to the mirror surface (in Figure 3.11 the center
looks faint due to the spatial resolution of the scan). We can adjust X and Y to maximize
reflected power. We can ensure we are in the center of the micromirror by moving in
either direction, the signal as a function of distance from the center should look like a
“W”.

8. Finally, the Z axis is adjusted to maximize the collected power.

Once these steps have been completed, a wide scan of the laser wavelength will reveal trans-
mission peaks and reflection dips corresponding to the optical resonances. The final alignment
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can be done by maximizing the transmitted peak.

3.6.2 Alignment to the bottom mirror for transmission measurements

Because the bottom silicon mirror has a higher reflectivity coating than the top mirror, a set-
up to measure in transmission should pump the cavity through the bottom mirror. We cannot
use the same tricks as described above for two reasons. First, the bottom mirror is completely
planar and we have no characteristic behavior when the laser is close to alignment. Second, we
have the inconvenience of a large distance (roughly 17.5cm) between the cavity and the bottom
viewport of the cavity, as well as a fixed mirror in between.

We have been successful in coupling light to the cavity from the bottom by first aligning
the beam from the top as described previously. The laser is left continuously scanning across
an optical resonance, so that there is a periodic transmission signal. The transmission detector
and accompanying focusing lens is replaced by a large beam collimator (Thorlabs F810APC-
1550) mounted on an 3-axis translation stage. Through patient scanning of the collimator’s
position, the transmission can be coupled into fiber. Now, sending light from the large beam
collimator will pump the cavity. The mode-matching achieved in this situation is of a few
percent, however, we believe there is much room for improvement as we only tried this method
once.



Chapter 4

Micromirror fabrication through
laser ablation

In this chapter, I present the concave micro-mirror template fabrication set-up used to create
the curved surface on the top mirror. We use a feedback controlled procedure based on real-
time collection of the light emitted in laser ablation. We simplify and improve on the set-up by
Petrak et al [65]. The standard procedure for laser fabrication of micro-mirror templates uses a
CO2 laser pulsed with repetition rates in the range between 1kHz − 10kHz. Ablation happens
when a train of laser pulses are focused on the sample over a time ranging between a few
to hundreds of milliseconds. The train of pulses can be generated by direct stimulation of the
laser medium [66] or by continuously driving the laser and afterwards selecting pulses using an
acousto-optical modulator (AOM) [67]. The former approach results in a large spread (>10%) of
the resulting mirror depth and radius of curvature due to unpredictability of laser gain medium
response to the excitation. The latter method addresses the problem by maintaining the laser
emitting at a fix repetition rate and duty cycle, but is still limited by laser power fluctuations.

Micromirrors of this kind are usually fabricated on the tip of optical fibers. In that case, the
repeatability and yield of the process is not very important. If the mirror template is not satis-
factory upon inspection, the fiber is cleaved again and the process repeated until the geometry
matches the target. In our case, we want to fabricate mirrors at a precise location of an already
processed substrate. We need perfect yield in order to not waste substrates. Fabricating multi-
ple mirrors in the same substrate until reaching the desired geometry would make alignment
practically impossible.

We show that high yield and low geometry spread fabrication can be accomplished with
simple and off-the-shelf electronic components. Through in-situ optical characterization us-
ing a phase-scanning interferometer, we reduce the mirror asymmetry by reliably placing the
sample at the ablating laser’s focal spot. We explore the space of geometries achievable with
our set-up and find that it can be used to reliably fabricate shallow structures with adjustable
radius of curvature up to a millimeter and down to tens of micrometers.

4.1 Setup

A schematic view of our setup is shown in Figure 4.1. The setup consists of two parts, one
part for laser ablation and another part for characterization. The sample, in our case, a square
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Figure 4.1: Schematic view of the mirror fabrication set-up. The sample is moved
using a motorized linear stage from the characterization side, a scanning-phase
interferometric microscope, to the ablation part, where the beam of a CO2 laser
is focused on the sample to create a concave indentation. MO: Mirau objective
(movable along the optical axis using a piezolectric stack), PH: pin hole, OI: op-
tical isolator.
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Figure 4.2: Signals recorded during the fabrication of a mirror template. The
blue curve is the TTL modulation signal sent to the laser. The orange curve is the
white light emission measured by the photodetector behind the target sample.
The dashed green line represents the reference voltage used in the voltage com-
parator.

substrate made of SiO2 (although a conventional optical fiber can also be ablated), is mounted
on a motorized 3-axis translation stage (Physik Instrumente M112.1DG1) allowing for relative
movement of the sample and alignment to the focus of the infrared laser beam. An additional
motorized long travel range is used to move the 3-axis stage together with the sample from the
ablation to the characterization part and vice-versa.

4.1.1 Laser ablation subsystem

In the ablation part, we use the focused beam of a Synrad v40 Firestar CO2 laser to ablate the
surface of the target sample. An optical isolation stage placed in front of the laser is used to
remove possible back-reflections from re-entering the laser cavity and potentially causing insta-
bilities. To obtain a near Gaussian beam profile, we use a mode-cleaning telescope consisting
of a 300µm diameter gold coated pinhole placed in the focal plane between two f = 50mm
plano-convex lenses made of ZnSe. The mode-cleaning telescope is critical to obtaining a circu-
larly symmetric mirror. Finally, the filtered beam is focused onto the sample using a ZnSe lens,
where the focal length will partially determine the shape of the ablated areas on the substrate.

Feedback system

As a core element of our setup, we use a real-time feedback system to control the duration of
the infrared laser pulse for ablation. As illustrated in 4.1, the feedback utilizes the emission of
broadband white light from the sample occurring in the glass ablation process when irradiated
with the infrared laser [65]. We monitor the emitted light with a large active area (13mm2)
biased Si photodiode (Thorlabs DET36A/M) which we mounted directly behind the glass sub-
strate. Once the signal of the detector reaches a set value, the CO2 laser stops and the ablation
process finishes.

We implement this protocol with an electronic circuit consisting of two main components:
a voltage comparator (TI LM311P) and a Set-Reset latch (TI 74LS279). The implementation we
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Figure 4.3: Left: Simplest yet functional circuit implementing the feedback con-
trolled laser ablation protocol. The circuit implemented is more complex due to
added safety features (see main text). Right: The physical circuit is encased in
an aluminium box with BNC connectors and light indicators. A USB port at the
front powers the device and allows for communication between the microcon-
troller and the computer.

use is a cost-effective alternative to the system implemented in previous work [65] which uses a
Field Programmable Gate Array (FPGA) device. The simplification is possible due to our laser
implementing its own ”tickle” pulse generator, which are a 1µs short pulses used to keep the
gain medium ionized. The circuit has additional safety features to ensure that the CO2 laser
is not left emitting in CW. After testing the circuit in a breadboard, a custom printed circuit
board and aluminium enclosure were designed1, which are available on GitHub2. The feedback
circuit board attaches itself to an off-the-shelf development board containing a STMF303RE
microcontroller unit (MCU). The MCU has a digital-to-analog converter, which we use to set
Vref. By means of serial communication, we use a computer to set the voltage and trigger the
feedback protocol.

The fabrication protocol using feedback proceeds as follows. Ablation starts after a user-
generated signal primes the latch into the high logic state, the output drives the laser into
emission. The voltage comparator resets the latch to its low logic state once the photodetector
signal surpasses a user defined reference voltage. The laser emission stops and the ablation
process is concluded. Time traces of the involved signals are recorded by an oscilloscope, an
example of which can be seen in Figure 4.2.

4.1.2 Characterization subsystem

The characterization part of the setup is based on a homemade scanning phase interferome-
try microscope. The key element of the interferometer is a Mirau microscope objective (Nikon
CF IC EPI Plan DI 20×A) mounted on a linear translation stage (Thorlabs PT1/M) retrofitted
with a piezoelectric chip stack (Thorlabs PC4QM). We use an LED emitting at 617nm (Thor-
labs M617L4) to create a magnified interferometric image that we record with a monochrome
CCD sensor (Thorlabs) using a f = 500mm lens. The height profile of the sample can be recon-
structed by capturing a series of images at different objective-to-sample distances, which we
control using the piezoelectric actuator mounted in the objective base. The objective is scanned
approximately 8µm along the optical axis.

1Translating the circuit into a printed circuit board and designing the enclosure was done by the author’s brother.
Thanks Guillem.

2https://github.com/gallepuz/laser-feedback

https://github.com/gallepuz/laser-feedback
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Height map reconstruction from scanning phase interference microscopy

The problem of reconstructing a height map from an interferometric image stems from the
multi-valued nature of the inverse cosine/sine function. The image obtained in a interferomet-
ric microscope is given by:

I(x,y) = I0(x,y) +C(x,y) · exp

−4
(
z(x,y)− z0

Lcoh

)2
cos

(
4π
z(x,y)− z0

λ

)
, (4.1)

where I0(x,y) is the value of the image at zero contrast C(x,y). z(x,y) is the height of the surface
and z0 the position of the objective. Lcoh is the coherence length of the light source. The ambigu-
ity when inverting the cos function may be resolved if we provide some additional information
about the height map z(x,y) that we are trying to recover. For example, if z(x,y) is concave or
convex at very x,y, the ambiguity is solved. If a good model for z(x,y) is available, we can fit the
expected interferometric image to our measured image. In practice, these two methods fail due
to the non-uniform nature of the offset I0(x,y) and contrast C(x,y). This dependence implies
that the function connecting I(x,y)→ z(x,y) is itself a function of x,y.

These problems can be addressed if we capture a sequence interferometric images at differ-
ent sample to objective distances with the help of the piezoelectric actuator z0(vk). The value of
the pixel i, j at the voltage vj is:

I(xi , yj ,vk) ≃ I0(xi , yj ) +C(xi , yj ) · exp

−4
(
z(xi , yj )− z0(vk)

Lcoh

)2
cos

(
4π
z(xi , yj )

λ
+K · vk

)
, (4.2)

where I have considered that there is a linear relation between z0(vk) and vk that has been
absorbed together with 4π

λ into a constant K . Assuming that the overall change in z0 is small
compared to Lcoh, the pixel value as a function of vk is given by a cosine. Without needing to

calibrate I0(xi , yj ) nor C(xi , yj ), we extract the value of the phase 4π
z(xi ,yj )
λ using the Fast Fourier

Transform (FFT) over vk .

The set of FFTs at each pixel gives us a phase map in the range 0 to 2π, thus it will present
some discontinuities. We can correct by adding or subtracting multiples of 2π using a phase
unwrapping algorithm. We use the 2D unwrapping algorithm presented in [68] in order to
recover a smooth phase map. The actual height profile of the sample is easily recovered using
the wavelength of our light source.

4.1.3 Fabrication procedure

Fabrication is controlled by a computer running a program with a Graphical User Interface
(GUI) based on the Qudi software suite [69]. The program communicates with a micro-controller
in charge of generating the logic signal that primes the feedback system and the reference volt-
age used by the comparator. The fabrication of a single feature proceeds as follows:

1. The sample starts in the characterization side. It is brought to the focal point of the
interferometric microscope using an auto-focus procedure. Due to the short depth of
field of the microscope, its focal point is used as a reference position. Using a live-view of
the interferometric image, the user can also position the sample so as to ablate the feature
in a precise locatio. In our case, the center of the mirror substrate, but it could be used,
for example, to create a dimple on the core of an optical fiber.

2. The sample is moved to the ablation side using the long range stage. Furthermore, the
sample is moved a calibrated distance in the three spatial directions so that the point at
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Figure 4.4: (a) Height map of a fabricated feature obtained through phase-
scanning interferometry. (b) Height profiles along the horizontal and vertical
lines that intercept the center of the feature.

the center of the interferometric image is now placed at the focal point of the CO2 laser.
The calibration was done by performing ablation at different offsets along the optical axis
of the ablataion laser and manually selecting the offset where the features created where
closer to having circular symmetry.

3. The feedback-controlled ablation process is engaged by the micro-controller.

4. The sample is moved back to the characterization side to obtain a height map of the fea-
ture. Additionally, the program can estimate the depth and radius of curvature of the
fabricated feature.

4.2 Fabrication results

In this section, we discuss the mirror geometries that have been achieved, as well as the per-
formance of the feedback system. The mirror geometries presented in this sections have been
fabricated focusing the CO2 beam with a 100mm focal length lens. This particular focal length
has been selected as it results in mirror templates with radii of curvature around 300µm at a
mirror depth of around 2µm. We find that using a shorter focal length lens creates shallow mir-
rors with smaller radius of curvature, resulting in low-volume optical cavities which are more
suitable for cavity QED experiments. Using a 25mm focal length lens, we are able to reliably
fabricate mirrors with radius of curvature down to and about 30µm.

The geometry of the mirror templates is measured using the phase-scanning interferometric
microscope, which is able to reconstruct height profiles with a perpendicular spatial resolution
of roughly 100 nm/pixel. The scaling factors have been calibrated by measuring the profiles
of atomic force microscope calibration gratings. An example of such a height map is shown in
Figure 4.4. The depth d of the feature can be measured directly from the height map. To allow
for comparison, we characterize the curvature using the same parameters used in the work [67].
Two curvature radii Ra and Rb are defined to characterize the possible asymmetry of the feature.
They represent the radius of curvature along the major and minor axis of the elliptic paraboloid
used to approximate the lower part of the mirror. Ra and Rb are obtained by fitting the center
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of the height map with the following expression:

z(x,y) ∝ 1
2Ra

(xcosφ− y sinφ)2+ (4.3)

+
1

2Rb
(x sinφ+ y cosφ)2, (4.4)

where φ is the angle formed by the major axis of the ellipse and the horizontal of our image. In
following discussions, we use the mean value R.O.C. = 1

2 (Ra +Rb) as a measure of the radius of

curvature. We measure a feature’s asymmetry through the quantity |Ra−Rb |Ra+Rb
.

4.2.1 Repeatability and yield

The implemented feedback system is shown to reduce the variance of mirror shape on both
configurations. Figure 4.5 shows the distribution of depth and radius of curvature of the mir-
rors with and without feedback. The relative variance, calculated as the standard deviation to
mean value ratio, of the mirror depth is reduced from 10% to 3% , and the relative variance of
the radius of curvature is reduced from 6% to 3%. The average feature asymmetry is around 3%
for both cases. The improvement is due to the feedback system correcting for the unpredictable
delay between the trigger pulse sent to the laser and the start of the ablation. This delay has
a relative variance of 8%, which has been measured by defining the start time of the ablation
as the time when the emitted white light is 10% of its peak value. Without the presence of
feedback, this translates to variance of the active ablation time. The delay might be caused by
the laser responding to the signal with different rise times depending on the state of the gain
medium, which will depend on the temporal proximity to the tickle pulses generated by the
laser internal circuitry (1µs in length at a 1kHz repetition rate). Additionally, the delay in
ablation might also be caused by residue on the surface of the target substrate. The feedback
system is limited by power fluctuations of the laser, which according to the manufacturer are
±3%.

Our set-up is completely automatized and can create and characterize mirrors in the same
target substrate at an approximate rate of 1 mirror per minute. We have created and measured
upwards of 1000 features to characterize our process and did not observe any failed fabrication
in the presence of feedback.

4.2.2 Range of geometries

The value of Vref can be tuned to obtain a target geometry. Figure 4.6 (a) and (b) show the
wide range of mirror geometries that can be obtained by adjusting the value of Vref. Figure
4.6 (c) shows the verification of the power law relating radius of curvature and depth found in
previous work [53, 67]. A wider range of geometries can be accessed by adjusting the power of
the CO2 laser (i.e. by means of a polarizer) or adjusting the size of the laser spot using different
powered lenses.
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Figure 4.5: Comparison of the geometry distribution of 100 mirrors fabricated
without engaging the feedback and in the presence of feedback. In the absence
of feedback, the modulation signal to the laser is a square pulse with a constant
duration of 184µs. (a) Distribution of mirror depth. (b) Distribution of radius of
curvature.
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Figure 4.6: Reference voltage Vref dependence of the mirrors’ (a) depths and (b)
radius of curvature. (c) Given an ablation laser spot size and optical power, the
radius of curvature and depth are related by a power law. 10 features have been
fabricated at each reference voltage. Vref is expressed in the units of the digital-
to-analog converter used.
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Chapter 5

Characterization of the cavity
optomechanics experiment

In this chapter we present the methods used to characterize the performance of our cavty op-
tomechanics experiment.

5.1 Optical characteristics

5.1.1 Free spectral range, length and mirror curvature

The characterization of the optical properties of the MIM system starts by determining the
free spectral range (FSR) of the cavity. The laser is scanned at a rate of 1nms−1 in the range
accessible by our main laser, from 1510nm to 1630nm, while recording the transmission signal.
Such a scan can be seen in Figure 5.1, where the FSR has been extracted from the periodicity
of the resonances. The size of the cavity inferred from the FSR is 126µm, which is within the
tolerances of the spacers used.

The resonant frequencies of higher order Hermite-Gaussian modes, which are the lower
amplitude peaks left to each fundamental mode in Figure 5.1, give information about the cur-
vature of the concave mirror. The difference is resonant frequency of higher order HG modes
is due to their accumulated Gouy phase being different after one cavity round-trip. This extra
phase depends on their mode number n + n and their waist size w0, which results in the dis-
tance in frequency between the HG00 peak and a HGmn peak being a function of the ratio of
cavity length L to radii of curvature, R1 and R2. The frequency shift is given by the following
expression[34]:

∆ωm,n =
ωFSR

π
(m+n)arccos

√(
1− L

R1

)(
1− L

R2

)
. (5.1)

It is thus straightforward to obtain a value for R1, knowing that R2 = ∞ (planar mirror) and
assuming that the peak closest to our HG00 is first order HG mode (m + n = 1). The resulting
curvature is R1 = 267±9µm, with the uncertainty given by different spacing at each resonance1.
With this information, we infer that the cavity mode has a waist size of wc ≃ 8µm.

1I used the same method when characterizing a focusing metamirror during a stay in Prof. Dalziel Wilson’s group
at the University of Arizona, the work can be found in [39].
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Figure 5.1: Cavity transmission recorded as the laser’s wavelengths is scanned
120nm around 1570nm. The laser pumping the cavity has been intentionally
misaligned in order to measure the position of the resonances with higer-order
spatial modes. The FSR of 1.19THz implies a cavity length of 126µm.

5.1.2 Optical linewidth and birefringence

Most cavity optomechanical phenomena depend strongly on the the cavity decay rate κ and
thus it should be thoroughly characterized. Ideally, a straight forward way of determining κ
is to measure the FWHM of the Lorentzian resonance peak in reflection or transmission, in
practice, one must be careful when fitting the peak.

The first effect that we have observed modifying the shape of the resonance peak is birefrin-
gence. Our MIM system behaves like a cavity formed around a birefringent medium: there
are two different FSRs for two principal polarization axes. When the input beam’s polar-
ization is not aligned to one of the two principal polarizations, two peaks appear in the re-
flection/transmission spectra. The birefringence in our system was found by noticing how a
lorentzian model did not fit well the transmitted resonance. Due to the shift between polariza-
tions being smaller than κ, the two peaks are joint and appear as a non-lorentzian line shape.
Luckily, we could characterize the birefringence because the shift it causes is amplified for
higher HG modes, as it can be understood from Equation 5.1. In modes with orders m+ n = 1
and m + n = 2, two peaks are observed due to the shift being larger than the linewidth. The
shift was measured by creating 500MHz phase modulated sidebands on the input beam. The
transmission resonance present six peaks, two for each polarization and four sidebands, the
frequency axis can be calibrated through the spacing between carrier and sideband resonances.
The split in a m+ n = 1 resonance at 1520.8nm was measured to be 136MHz and in a m+ n = 2
mode at 1518.7nm was 241MHz. The birefringence is also present in the empty cavity, indicat-
ing that it probably originates form asymmetry in the mirror’s curvature, this is supported by
the slight asymmetry seen in the height profiles of the micro mirrors (Figure 4.4). An alterna-
tive explanation is birefringence arising in the HR coatings[70–72]. We remove the problem of
birefringence by aligning the polarization of the input beam to one of the principal axes. This
will work as long as we do not need to keep resonant two beams originating in the same laser
but with perpendicular polarization.

Despite suppressing the effects of birefringence, the observed line shape was still poorly fit-
ted by a Lorentzian. This is due to the limited scan speed of our laser and the high-cooperativity
achieved even at low input powers. Phonon lasing taking place while scanning through the blue
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Figure 5.2: Transmission resonance obtained by scanning the laser frequency
around λ ≃ 1551.1nm. The frequency axis has been calibrated using phase side-
bands at 200MHz. The blue trace is obtained shortly (around 100ms) after keep-
ing the laser locked at ∆ ≈ −κ. The orange trace is obtained after the laser has
been scanning continuously for tens of seconds.

side of the resonance is strong enough to modify the line-shape. This effect manifests itself
clearly when comparing the two following situations. In the first situation, the laser is contin-
uously scanned across the resonance until we record one of the scans to measure the linewidth.
In the second one, the laser is kept locked at the red side of the resonance until we record a
single frequency scan. There is an appreciable difference in the line-shape, as it can be seen in
Figure 5.2. In this particular resonance and input power, the difference in measured linewidth
is of 7MHz, equivalent to a drop of more than 10000 in measured finesse.

We have measured κ at all the resonant wavelengths accessible by our laser. We have mea-
sured the linewidth with and without a membrane. This has been done with exactly the same
cavity assembly thanks to the membrane rupturing (see Section 6.1). In Figure 5.3 we observe
a general trend given by the reflectivity dependence of our mirror coatings. The linewidth of
the loaded system is generally higher than the empty cavity linewidth. Super-imposed on the
mirror reflectivity curve we see the behavior expected from our simulations of the MIM system
done in Section 2.5. The MIM model also predicts a correlation between the the strength of
the optomechanical coupling |G| and the difference of κ respect to the empty cavity behavior.
Thus, the jumps in κ observed for lower wavelengths indicate a larger |G|. Both the maximum
finesse in the loaded cavity (≈ 62000) and empty (≈ 65000) are above the finesse expected from
the nominal value of the coatings provided by the company that coated the substrates (≈ 5800),
we believe this is caused by either an underestimation of the FSR or by an incorrect nominal
reflectivity2. This is not of great importance as the linewidth is the relevant parameter in the
behavior of the system.

2The company could not guarantee the values of reflectivity for non-standard substrates



82 CHAPTER 5. CHARACTERIZATIONOF THECAVITYOPTOMECHANICS EXPERIMENT

1520 1540 1560 1580 1600 1620
Wavelength (nm)

20

25

30

35

40

45

κ
/2
π

(M
H

z)

Loaded cavity

Empty cavity

Figure 5.3: Linewidth of the resonant modes of the cavity that are accessible
by our laser. In blue, measured with a membrane in the middle, in faint or-
ange, the empty cavity linewidth. The cavity has not been reassembled in order
to include/remove the membrane. Rather, the empty cavity linewidth was mea-
sured after the membrane ruptured inside the cavity. The empty cavity linewidth
reaches its minimum around the design wavelength of the high-reflectivity coat-
ings (1550nm), while the the loaded cavity does not due to the finesse enhanc-
ing/reducing effect of the membrane in the middle.

5.2 Mechanical quality factor

The damping rate of the mechanical oscillator can be determined by driving it with a modulated
force close to its frequency. After turning the excitation off, the resonator will ringdown, its
energy will decay exponentially until it comes back to its thermal equilibrium. In a cavity
optomechanical system, the decay rate observed in a ringdown is given by the bare mechanical
damping rate Γm modified by dynamical backaction. In the red-detuned regime, the decay rate
is larger (Γ opt

m > 0⇒ Γeff > Γm) and in the blue-detuned regime is smaller (Γ opt
m < 0⇒ Γeff < Γm)

and possibly negative in the case of phonon lasing (
∣∣∣∣Γ opt
m

∣∣∣∣ > Γm). Dynamical backaction only

disappears when the cavity is pumped on resonance Γ
opt
m = Γm.

Characterization of the bare mechanical rate Γm is crucial because it will determine the co-
operativity in our system. We therefore need to somehow remove the effect of dynamical back-
action. Ideally, Γm can be found pumping the cavity at ∆ = 0 because it ensures no enhancing
of the decay rate. In practice, the dynamical backaction in a high cooperativity system is ex-
tremely difficult to get rid off. The contribution caused by any small deviation from ∆ = 0
greatly overwhelms the bare damping rate due to how small it is (Γm ≈ 10mHz).

There are different approaches to the problem. An option is to completely avoid the problem
by measuring the resonator’s Γm prior to being put in the optical cavity (through interferome-
try). The challenge is that the conditions in the experiment to determine Γm might be different
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Figure 5.4: Set-up configuration used for ringdown measurements. The 1550nm
laser (red) is aligned to the MIM system while the 970nm laser (blue) propagates
along the same path. PID: Proportional-Integral-Derivative controller, PC: Ex-
periment computer. UHV: Ultra-High Vacuum (vacuum chamber)

than in the cavity. It is possible to compensate for some of these conditions, such as pressure
[52], but it is impossible to take into account any possible degradation of the resonator’s quality
factor when being moved from experiment to experiment. Another option is to reduce the effect
of dynamical backaction by performing the ringdown at ∆≪ κ, ideally at a low-cooperativity
resonance mode. For example, in the work by Huang et al[27], a laser with wavelength far
form the mirror coating optimum is used. By performing ringdowns at progressively lower
intracavity photon number, one can extrapolate the bare mechanical damping rate.

None of these approaches are satisfactory in our experiment. Although the first option
presented might be possible, the quality factor of the resonator used was determined through
interferometry prior to being diced from its silicon wafer. It is not realistic to assume that
the dicing process will leave the damping characteristics untouched. The second option is
challenging due to the large G and broadband reflective coatings of our cavity, we can’t access
any cavity resonance mode that ensures a cooperativity low enough, with all the resonances
accessible by our experiment laser having finesses above 27000.

The unique geometry of our experiment allows for a third option. A laser far from the HR
coating optimum will transmit through the top fused silica mirror, a small fraction will reflect
off the membrane while a considerable fraction will reflect off the bottom silicon mirror, as
silicon has a high refractive index for the visible and near-infrared range. Due to the close
distance of around 60µm between the bottom mirror and the membrane, we effectively have a
readily aligned interferometer. First a 1310nm laser (electrical to optical converter) was used,
the thermomechanical motion could be detected in transmission. The signal was unrealible,
the SNR changing with time due to the etalon effect of the silicon substrate and the fluctuating
wavelength of this particular laser. A lower noise laser at this wavelength would be the ideal
solution as it propagates in a similar manner to the main wavelength. The second and successful
attempt was using a wide-tunable diode laser (Toptica CTL 950) set at a wavelength between
970nm and 980nm.

The experiment was modified in the way shown in Figure 5.4. The main experiment laser,
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tuned around 1550nm, is aligned to the cavity and its frequency can be locked to a cavity reso-
nance using the transmission signal. Using a fiber splitter with design wavelength at 1550nm
(Thorlabs PN1550R2A2), the beam of the 970nm laser is combined into the same path. A 90:10
beam splitter cube (designed for 1550nm, with a splitting ratio of roughly 70:30 at 970nm)
is used to collect reflection from the cavity, which is measured with a large area InGaAs pho-
todetector (Thorlabs PDA20CS2). Due to the high absorption of silicon at 970nm, a negligible
amount of the non-resonant beam transmits through.

The ringdown measurement proceeds as follows:

1. The main laser is off. The non-resonant laser is on, with a power around 1mW reaching
the MIM system. The reflection detector connected to the spectrum analyzer is used to
record the thermomechanical motion. A zero frequency span measurement is centered at
the mechanical frequency3.

2. The main laser is turned on and locked to the blue side of the resonance. The lock is stable
for a few tens of seconds when using a small amount of resonant light (around 1µW).
The mechanical resonator’s energy grows due to phonon lasing, which can be observed
through the signal measured in the SA.

3. After a few seconds, the oscillation is large enough for the optical resonance to split and
the lock becomes unstable. At this point, the main laser is turned off.

4. With only the non-resonant laser present, no dynamical backaction is possible and the
resonator losses energy according to its bare mechanical damping rate.

A time domain recording of the signal during the protocol can be seen in Figure 5.5a. A
recording of just the ringdown section, such as the one shown in Figure 5.5b, allows us to
measure Q and Γm. The exponential decay in logarithimic scale is a linear function of time,
which we can fit using the following convenient equation[58]:

Γm =
log10

10
dsdB

dt
, (5.2)

where sdB is the signal in decibels as measured by the SA.

5.3 Strength of the optomechanical interaction

Different parameters defined along the previous chapters can be a figure of merit of the op-
tomechanical interaction. The displacement to cavity frequency shift parameter G could be
used, but it does not take into account the nature of the oscillator. For example, a short cavity
with centimeter-sized off-the-shelf mirrors will have a large G, but due to the small zero point
fluctuation of the mirrors, will not easily show quantum behavior. The single-photon optome-
chanical rate g0 = Gxz.p., which is introduced in order to write the optomechanical Hamiltonian
in terms of phonon creation and annihilation operators, is a better figure of merit, as it takes the
“quantumness” of the resonator into account. Nevertheless, a cavity of very low finesse would
still have a large g0 and, crucially, so would a resonator with low quality factor.

As we have seen in Chapter 2, the light enhanced coupling rate g is the crucial parameter
for predicting the dynamics of the optomechanical system in the linearized approximation.
Additionally, as discussed at the start of Chapter 3, the quantum cooperativity Cq is the most

3In a zero-span measurement, the spectrum analyzer mixes the input signal with a singular frequency and applies
a low-pass filter to the resulting signal. This results in a measurement of power at that particular frequency, which can
be recorded as a function of time.
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Figure 5.5: Ringdown measurement of the mechanical quality factor. a. Signal
of the mechanical motion measured with the off-resonant wavelength. The ring-
down protocol starts with the resonant laser off, once it is turned on around 20s
into the measurement, the mechanical signal grows exponentially due to the res-
onant laser being blue-detuned. At around 50s, the laser lock becomes unstable
and the laser is turned off. Without intracavity photons, the resonator loses en-
ergy at its bare damping rate. b. Ringdown measurement using the third section
of the data shown, the quality factor is extracted from the linear fit.
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relevant figure of merit for the presence of quantum effects. In this section, we will measure
both using the optical spring effect. Even though g0 is not the ideal figure of merit, it is still an
important parameter to characterize, as we discussed in Subsection 3.1.1, the larger the g0, the
more immune our measurement is to laser phase/frequency noise. Once C or g are know, the
predicted phonon occupation of the resonator can be estimated. With this information, g0 can
be estimated through comparing the are under the mechanical peak with the area under the
peak of a calibrated phase tone [73]. Unfortunately, due to time constraints, we have not been
able to include such measurements in this work.

5.3.1 Measurement of cooperativity through the optical spring effect

The cooperativity C and the light-enhanced coupling rate g can be determined through the
measurement of the optical spring effect, the change of mechanical frequency due to dynami-
cal backaction that we described in Subsection 2.6.3. Using the quantum Langevin equations,
we found that the shift mechanical frequency due to the optical spring effect in the sideband
unresolved regime (Ωm≪ κ) takes the following form:

δΩm ≃ g2(∆)
2∆

κ2/4 +∆2 , (5.3)

where I emphasize that, at constant input power, g is a function of ∆ due to the intracavity
photon number nc depending on detuning. We can make the dependence explicit and find an
expression as a function of the g achieved on resonance:

δΩm(∆) = g2(∆ = 0)
8∆(

κ+ 4∆2

κ

)2 . (5.4)

We now have a straight-forward experimental procedure to obtain g, we lock our laser at differ-
ent ∆ and record the shift in the observed mechanical frequency. With knowledge of κ, we can
fit the behavior using the above expression to obtain g2(∆ = 0). g2(∆ , 0) can be extrapolated
using the Lorentzian dependence of nc on κ. In practice, the optical spring effect is not the
only phenomenon that changes the mechanical frequency as a function of intracavity power,
making method is unreliable. We observe an additional change of mechanical frequency that
we attribute to photothermal heating. This has been observed in similar MIM systems [28].

Fortunately, it is possible to devise a simple experimental procedure that keeps the intra-
cavity power resonant while changing the detuning. By keeping the transmission lock signal
at a constant value and increasing the input power, the locking system will detune the laser in
order to stay on the target transmission. The procedure goes as follows:

1. A reference transmission peak is measured at a certain input power P0.

2. The laser is locked at a small detuning ∆ ≈ −0.1κ using a side-of-fringe lock.

3. The membrane is left to thermalize for sufficient time, the mechanical peak frequency can
be tracked through the thermalization to ensure that it has reached its equilibrium.

4. The input power is increased step by step, measuring the cavity reflection through ho-
modyne detection in order to determine the mechanical frequency shift. Through prior
calibration of the electronic variable optical attenuator used, the ratio Pi /P0 is known at
each power Pi used. Using the transmission peak measured in step 1 and knowing Pi /P0,
we can determine ∆ at each step.
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Figure 5.6: Measurement of the optical spring effect. Top: Homodyne signal
spectra recorded in order to track the mechanical frequency shift at different
detunings. Each row of the image is a spectrum at a different detuning but at
constant intracavity power. Bottom: The shift in mechanical frequency identi-
fied from the spectra above. The data has been fit with the expression found in
Equation 5.5, with the two free-parameters being Ωm and the factor ΓmC. The
estimates for C and Cq are found considering a quality factor of Q = 97×106 and
g from the optical mode’s linewidth κ = 2π · 20MHz.
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The protocol can be followed using the relative detuning ν = 2∆
κ and fitting the following ex-

pression of the frequency shift:

δΩm = ΓmC
ν

1 + ν2 , (5.5)

with our knowledge of Γm (obtained through ringdown), we obtain a value of the cooperativity
C without knowledge of κ. The quantum cooperativity is simply obtained by its definition
Cq = C/nth using nth ≃

kBT
ℏΩm

. This is quite remarkable: the optical spring effect allows us to
determine if our cavity optomechanical system is in the quantum regime with no calibration of
cavity parameters.

An example of the optical spring effect at constant intracavity power is shown in Figure 5.6.
Once the cooperativity has been determined for a given transmission level, we can estimate the
transmission level necessary for reaching Cq ? 1 through the linear relation between transmit-
ted power and intracavity photon number, and the linear relation between cooperativity and
the latter. A value of g can be inferred from this measurement, the cavity linewidth and the
quality factor.

At this cooperativity, the resonator is strongly cooled by dynamical backaction cooling. The
phonon occupation can be estimated using the following expression [25]:

nf =
Γ

opt
m nmin + Γmnth

Γm + Γ
opt
m

, (5.6)

where Γ
opt
m is the damping cause by back-action found in Equation 2.103 and nmin is the mini-

mum phonon occupation achievable given our cavity’s linewidth:

nmin =
κ

4Ωm
≃ 4.4. (5.7)

The maximum reduction of phonon occupation happens a ∆ = −κ/2. With the cooperativity
found, that implies a final occupation of:

nf ≃ 31.8, (5.8)

equivalent to an effective temperature of 1.7mK.

5.4 Laser noise

Ideally, the only fluctuations in coherent beams are due to the fundamental quantum fluctu-
ations. In practice, lasers can have both amplitude and phase noise that are above those of
a coherent beam due to classical processes. In this section, we characterize the noise of our
laser. We check that it is quantum limited in amplitude around our frequency of interest while
exhibiting broadband excess phase noise.

5.4.1 Laser amplitude noise

When we measure the power of a laser, the photodetected fluctuations might be above the quan-
tum fluctuations. The beam of a laser might exhibit excess amplitude noise in some frequencies
while being shot noise limited in others, usually, shot noise operation is possible for frequen-
cies above a threshold. Fortunately, it is straightforward to check if a beam is shot noise limited
using direct detection.
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Figure 5.7: Signal fluctuations as a function of the mean value. In the horizontal
axis, VDC is the average voltage recorded, which is itself proportional to power.
The vertical axis corresponds to the magnitude of the power spectral density of
the voltage at 1MHz. A second-degree polynomial has been fit to the data, the
negligible quadratic term indicates that the beam is shot noise limited in ampli-
tude.

Consider a beam with classical amplitude noise δX̃, it will have the following amplitude
quadrature PSD:

SX̂X̂(ω) =
1
2

+ SX̃X̃(ω), (5.9)

and it goes through an attenuator with adjustable transmission η before arriving at a photode-
tector. This is the exact model of direct detection discussed in Subsection 2.7.1, using Equa-
tion 2.136, we find that the PSD of the photocurrent is:

Sii(ω) = |α|2 · η + 2|α|2SX̃X̃(ω) · η2. (5.10)

As we change the power of the beam by changing η, we will see a linear behavior if the beam
is shot-noise limited and a quadratic behavior if not. We have used this protocol to confirm
that our laser is shot-noise limited at frequencies around 1MHz. The results of varying the
attenuation and measuring the fluctuations are shown in Figure 5.7. The data has been fit with
a second-degree polynomial, the almost zero contribution of the quadratic term indicates that
the laser is indeed shot noise limited around 1MHz.

5.4.2 Laser phase noise

Diode lasers are known to have phase noise well above the quantum noise [74], even at frequen-
cies above 1GHz [75]. The phase noise of a laser can be measured through different methods.
One may use the quadrature rotation in optical cavities to convert phase into amplitude, the
amplitude can then be measured through direct detection [75]. Another way, known as de-
layed self-heterodyne interferometry, consists of a Mach-Zender interferometer where one arm
is made longer as to introduce a delay T (for example, see [51]). Classical amplitude noise can



90 CHAPTER 5. CHARACTERIZATIONOF THECAVITYOPTOMECHANICS EXPERIMENT

be canceled using balanced detection, which gives an advantage over the quadrature conversion
technique. We have built such an interferometer, shown in Figure 5.8, in order to characterize
the phase noise of our laser.

First, let us see how the spectrum of the signal relates to the spectrum of the phase noise.
The phase fluctuation prior to entering the interferometer is:

φ(t) = φn(t) +φm(t), (5.11)

where φn is the laser phase noise and φm(t) = β sinωmt is a modulation added by a phase
modulator located at the laser output. The modulation will allow us to calibrate the recorded
spectrum. After the two paths, the delayed and non-delayed, are recombined at the first PBS,
they interfere at each output port of the second PBS. This results in a difference photocurrent
i(t) of the balanced detector:

i(t) ∝ φ(t)−φ(t − T ), (5.12)

when the DC relative phase between the two beams is set to 90deg. The symmetrized PSD of
the signal is:

S̄ii(ω) ∝ 4sin2
(ωT

2

)
S̄φφ(ω) (5.13)

we see that for a given T , S̄i(ω) will carry more or less information about S̄φ(ω) depending on
our analysis frequency ω. At frequencies ω = 2π/T , the factor is zero and S̄i(2π/T ) is given by
imprecision noise. We can define a transfer function K(ω) ∝ 4sin2

(
ωT
2

)
in order to write:

S̄ii(ω) =K(ω)S̄φnφn
(ω) +K(ω)S̄φmφm

(ω) + S̄imp(ω) (5.14)

where S̄imp(ω) incorporates all other noises (electronic, shot-noise of the beams, etc). K can

be calibrated at ωm by recording a spectrum with β , 0 and another spectrum S̄
β=0
i when the

modulation is off:

K(ωm) ≃

∫ ωm+δω
ωm−δω

S̄i(ω)dω −
∫ ωm+δω
ωm−δω

S̄
β=0
i (ω)dω

πβ2 , (5.15)

where δω is chosen small enough so that the following approximation is valid:∫ ωm+δω

ωm−δω
K(ω)S̄φm

(ω)dω ≃ K(ωm)
∫ ωm+δω

ωm−δω
S̄φm

(ω)dω =K(ωm)πβ2. (5.16)

Once K(ωm) is known, it can be extended through:

K(ω) =K(ωm) ·
sin2

(
ωT
2

)
sin2

(
ωmT

2

) , (5.17)

where T can be measured precisely from the dip in Si(ω = 2π/T ).

The PSD of the phase noise of our main experiment laser was determined through the pro-
cedure described above. The interferometer shown in Figure 5.8 was used to first record an
uncalibrated spectrum, show in Figure 5.9a. The calibration tone modulation depth was deter-
mined following the procedure described in Appendix F. The calibrated PSD of the phase and
frequency noise4 is shown in Figure 5.9b. Around the frequency of our mechanical resonator:
S̄φ(Ωm) ≃ 3.6× 10−9 rad2/Hz and S̄ωl (Ωm) ≃ 1.8× 105 Hz2/Hz

4The instantaneous laser frequency fulfills ωl (t) = ω̄l + φ̇(t), thus, by properties of the Fourier transform: S̄ωl (ω) =
ω2S̄φ(ω)
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Figure 5.8: The phase noise of a laser can be measured by interference with a
delayed fraction of itself. The laser output is split into two beams, one is delayed
by 10m of fiber, the other not. The phase of one of the beams is adjusted with
a mirror mounted on a piezo. The beams are recombined in a first polarizing
beamsplitter (PBS). Interference happens at each of the outputs of the second
PBS, which are recorded in the balanced detector. The electro-optical modulator
(EOM) at the output of the laser is used to add a known phase modulation, its
signal is used to calibrate the spectrum recorded by the spectrum analyzer and
the fast analog-to-digital converter (ADC).
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Figure 5.9: Laser phase noise measurements. a. Uncalibrated spectrum recorded
with the spectrum analyzer. The signal (red trace) is well above the shot noise
of each path (orange and green trace obtained by blocking each path), which
in turn is well above the electronic noise (blue trace obtained by blocking both
paths). The dashed gray lines indicate the dip locations given by the condition
ω = 2π/T , from which a delay T = 49.6ns is inferred, matching with 10 meters
of fiber with a refractive index of 1.5. The peak at 1MHz is the calibration tone
with modulation depth β = 0.261. b. PSDs obtained from 10, 2s-long time-traces
recorded at a 50MSample/s. Top plot: calibrated PSD of the lase phase noise.
Bottom plot: calibrated frequency noise of the laser.



Chapter 6

Experimental challenges in the
high-cooperativity regime

We have built a system that, on paper, can easily reach a quantum cooperativity beyond unity.
Indeed, if we look at the measured values of κ ≃ 2π · 20MHz and Γm ≃ 2π · 10mHz, assuming a
conservative g0 ≃ 2π · 100Hz1, the input power required for Cq = 1 is around 100µW using the
higher transmission port and around 1mW using the lower transmission port. The laser used
in this experiment, as well as most lasers, can easily provide such powers. Unfortunately, there
are a series of phenomena that challenge or prevent us from operating in a high-cooperativity
regime. In this chapter, we discuss such obstacles.

6.1 Membrane rupture

The membrane has ruptured while operating the system at high input powers in two different
occasions. A before and after picture of the system can be seen in Figure 6.1. In the first oc-
casion, a high power probe above 5mW was accidentally scanned across a high-finesse optical
resonance. In the second occasion, the membrane characterized in the previous chapter rup-
tured while trying to reach Cq ≃ 1 in a low-finesse mode at λ ≃ 1620nm. The first rupture was
identified due to a big drop in the finesse, which we associate with fragments of silicon-nitride
depositing on the mirror surfaces. The second, identified by the lack of mechanical signal, was
not accompanied by a drop in finesse.

We suspect that the static optical force can break the membrane by increasing its tensile
stress above its yield stress. When a material reaches its yield stress, it stops manifesting elastic
behavior and acts as a plastic. This breaks the pre-stressed suspended silicon-nitride mem-
brane. Stoichometric silicon-nitride has a pre-stress of around 1GPa and a yield stress around
6GPa [76]. A finite element simulation done in COMSOL Multiphysics reveals that the stress
of a square suspended SiN membrane can reach its yield stress when a point force of around
0.8µN is applied at its center. The static radiation force inside the cavity is given by Fopt = ℏGnc,
using the measured parameters of our optomechanical system, the input power needed to cre-
ate such a force is ≈ 2.9mW (when the cavity is pumped through the more transmissive mirror).
This matches the experimental conditions when the membrane ruptured.

1From simulations shown in Figure 2.8 while considering xz.p. = 2fm
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Figure 6.1: Top view of the system before (left) and after (right) a rupture of the
membrane. Both images have been obtained using a portable microscope focused
through the vacuum chamber window.

Another possible explanation for the rupture is that the membrane collided with one of
the mirrors. This is implausible due to the significant membrane to mirror distance, but we
will discuss briefly. To start, the static mechanical displacement caused by intracavity radiation
pressure is orders of magnitude smaller than the 70µm distance to the closest mirror. All things
considered, the idea is fundamentally flawed because, on its way towards one of the mirrors, it
would reach regions of positive, negative and zero optomechanical coupling that would create
forces towards one mirror, the other one, or no force at all. Another phenomemon with large
membrane displacement is phonon lasing (also called self-oscillations), the anti-damping that
manifests when the laser is blue-detuned. In the Chapter 5, we exploited this effect to measure
the quality factor by inducing oscillations large enough to be measured with an off-resonant
laser. If we look back at the ringdown measurements shown in Figure 5.5a, once the laser is
blue-detuned, the signal (which is proportional to

〈
q2

〉
) grows by approximately 60dB before

the system becomes unstable. Assuming that the signal prior to phonon lasing is due to thermal

motion (
√〈
q2

th.

〉
≃ 7pm) we reach oscillations of

√〈
q2〉 ≃ 7nm, four orders of magnitude far

from the membrane-to-mirror distance. Taking into account that self-oscillations do not grow
unbounded, but rather they saturate due to their non-linear nature [25, 77], we deem unlikely
that they are the cause of the rupture.

Summarizing, the powers needed to break the membrane are below the powers needed to
reach Cq ≃ 1 and membrane rupture does not impede quantum regime operation. However, it
remains an inconvenience.

6.2 Laser locking at high intracavity-power

The frequency of the laser is kept close to a cavity resonance by means of a Proportional-
Integral-Derivative (PID) controller. When we analyze the reflected light of the cavity, we use
an amplified photodiode to track the transmission signal. The PID controller, which in this
case is implemented by the laser manufacturer, adjusts the laser frequency in order to keep the
transmission at a target value. The scheme is usually referred as side-of-fringe locking because
it only works at ∆ , 0, as it requires a non-zero derivative of the transmission peak at the target
value. The other locking strategy, known as Pound-Drever-Hall (PDH), consists in generating
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an error signal that crosses zero at ∆ = 0 through phase modulation. PDH works due to phase
fluctuations rotating into amplitude fluctuation only when ∆ , 0. Thus, the demodulation of
the transmission or reflection amplitude signal at the same frequency will be zero at ∆ = 0.

In our experiment, we work in ∆ < 0 in order to lower the phonon occupation through
dynamical backaction cooling. We find that locking close to resonance is not reliable at high
power due to strong phonon lasing when the frequency momentarily drifts into ∆ > 0. Thus,
we use a side-of-fringe lock2. The locking procedure proceeds as follows:

1. The target transmission is set as a the setpoint of the PID, which is for now deactivated
(the three gains are set to zero).

2. The frequency of the laser is parked at a frequency below that of the optical resonance.
This translates to adjusting the piezoelectric actuator (piezo from now on).

3. The piezo voltage is slowly increased (in our laser ωl ∝ V ) and the transmission signal
is monitored. Because we always fulfill ∆ < 0, the only instability that may manifest
according to our model is the optomechanical bistability.

4. Once the transmission is close to our target, the PID is slowly engaged by increasing its
integral gain. We find that the integral gain is enough to keep the cavity resonant in most
situations.

A target transmission that ensures Cq > 1 is chosen by extrapolating the result of the coopera-
tivity measurement described in Subsection 5.3.1. Problems arise in step 3, when approaching
the target signal we observe two types of instabilities. The type of instability depends on the
optical mode that we are tuning to.

The first is a dynamical effect where, over the span of a few seconds, the transmission signal
starts oscillating at frequencies > 100kHz. After a few seconds the system becomes unsta-
ble. Measurement of the cavity output field reveals the overall mechanical signal growing in
amplitude. Although we have not been able to thoroughly study this instability before the elab-
oration of this report, the symptoms are similar to the photothermal instability observed in the
very similar experiment described in [27]. The effect looks similar to phonon lasing in the
blue-side of the resonance because photohermal effects can create delayed forces that can damp
or anti-damp mechanical modes, in a similar way to dynamical back-action [79].

We also observe a second distinct instability in modes that do not present the photothermal
instability. At high powers, the lock starts ringing at a particular frequency, usually signifi-
cantly below 100kHz. It differs from the previous instability because it has a single character-
istic frequency and its magnitude does not grow in time. The frequency does not depend on
the controller gains, which indicates that it might not be a problem of our locking system. We
discard optomechanical bistability because its threshold input power is below the input-powers
needed to reach a Cq ≃ 1. By calculating the discriminant of the cubic equation that determines
the intracavity photon number (Equation 2.92) we confirm that we operate the system outside
the regions where bistability occurs, which are illustrated in Figure 2.9.3.

2In [78], the author describes a modified PDH scheme with an error signal crossing zero at the magic detuning
∆ = ±κ/2

√
3. This is achieved by demodulating the signal a second time after detection. We have not tried such a

scheme in our experiment.
3The discriminant of a cubic equation ax3 + cx2 + bx + d = 0 is D = −27a2d2 + 18abcd − 4ac3 − 4b3d + b2c2. If D > 0,

there are three real solutions to the equation, if D < 0 there is one real solution and a pair of complex solutions. From

Equation 2.92, we find (a,b,c,d) =
(

4g4
0

Ω2
m
,

4∆g2
0

Ωm
, ∆2 + κ2

4 , −ṅinκ1

)
.
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Figure 6.2: Regions of stability (cyan) and bi-stability (orange) in a cavity op-
tomechanical system with parameters Ωm = 2π · 1.14MHz,κ = 2π · 20MHz,κ1 =
10κ/11, g0 = 2π · 1kHz. The horizontal axis is the detuning respect to the bare
cavity, in other words, the peak intracavity photon number is at ∆ < 0. The verti-
cal axis is the the quantum cooperativity achieved at peak intracavity field.

6.3 Phase noise in optomechanical experiments

In Subsection 5.4.2 we characterized the phase noise of our laser, which is above the quantum
limited phase noise given by the uncertaintity condition of a coherent beam

〈
∆X̂2

〉〈
∆Ŷ 2

〉
= 1

4 .
The effect of laser phase noise is double: it masks the mechanical motion upon detection and it
heats the mechanical resonator.

6.3.1 Heating by phase noise

The fact that only intracavity amplitude exerts forces on the resonator does not stop incoming
phase noise from affecting the dynamics. As long as ∆ , 0, incoming phase noise will be rotated
into amplitude, creating a stochastic radiation pressure. This incoherent force will raise the
phonon occupation, similar to raising the environment’s temperature. We will now proceed to
estimate the amount of phonons added by laser phase noise.

We will use a classical version of the non-linearized quantum Langevin equation of the
cavity (Equation 2.84). We can simplify the derivation by working in the fast cavity limit. We
consider κ≫Ωm, which is an adequate approximation of our system as κ/Ωm ≃ 20. We impose
the fast cavity regime by ȧ→ 0, which is equivalent to the cavity reacting instantaneously to
changes of detuning. We find the dependence of the intracavity field on the relative detuning
ν(t) = 2∆(t)/κ:

a(t) =
2
√
κin

κ
ain

1
1− iν(t)

. (6.1)

We will include phase noise through fluctuations in ν(t) = ν̄ + δν(t). As we saw in Chapter 5,
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phase noise and frequency noise are equivalent. The intracavity number found from the above
expression is:

nc(t) = n̄c

(
1− 2ν̄

1 + ν̄2 δν(t) + . . .
)
. (6.2)

The fluctuations on the intracavity number create a stochastic force given by:

δF(t) = −
ℏg0

xz.p.
δnc(t) =

ℏg
xz.p.

2ν̄
1 + ν̄2 δν(t), (6.3)

where we have used the expression for the optical force inside a cavity Equation 2.125. Its PSD
is:

SδFδF(ω) = 16
ℏ2

x2
z.p.

g2

κ2
ν̄2

(1 + ν̄2)2 Sωlωl (ω), (6.4)

where we have used δν = 2δωl /κ assuming all detuning is caused by laser fluctuations (empty
cavity with noiseless mirrors). If we make an analogy with the thermal force by comparing the
obtained PSD with the PSD of the thermal force (Equation 2.127), we can find the occupancy
of the effective bath corresponding to frequency noise:

nfreq. noise ≃
16g2

Γmκ2
ν̄2

(1 + ν̄2)2 Sωlωl (Ωm) = 4
C
κ

ν̄2

(1 + ν̄2)2 Sωlωl (Ωm). (6.5)

As expected, the increase of phonon occupation in proportional to the strength of optome-
chanical interaction through the cooperativity. It also makes intuitive sense that it is inversely
proportional to the cavity linewidth. A narrower resonance has larger slope on ∆ , 0, facilitat-
ing the conversion of frequency fluctuations into intracavity power fluctuations. If we consider
the laser’s frequency noise measured in Chapter 5, when the system is operated at ∆∗ = −κ/2

√
3

and Cq = 0.32 (Figure 5.6), the thermal bath occupancy is increased by ≈ 1000 phonons. The
effect of this heating is negligible when considering the strong dynamical backaction cooling at
this cooperativity and detuning.

6.3.2 Phase noise in detection

Phase noise in interferometers can be dealt with by ensuring that the reference beam and the
probe propagate the same length. We introduced this idea in Subsection 2.7.2, as well as ex-
ploiting it in order to be sensitive to phase noise (Subsection 5.4.2). Our experiment can be seen
as an interferometer where one arm contains a cavity. When we measure the cavity’s reflection
using homodyne detection, it is straight-forward to match the path length of the LO to that of
the probe. This will remove phase noise from homodoyne detection, but only when the laser is
fully off-resonance. Once the laser is tuned to the cavity, we observe balance homodyne (BHD)
spectra like the one shown in Figure 6.3.

Once the laser is tuned to the cavity, any input signal, amplitude or phase, will be reflected
or transmitted with a delay. Our interferometer arms are now effectively mismatched and the
experiment becomes sensitive to phase noise. This is the cause of the increased noise floor of
the BHD spectrum obtained when the laser is close to resonance. The obvious next step is to
add a physical delay to the LO that matches the cavity induced delay. The LO delay should be
in the order of 2π/κ ≈ 50ns, it changes with the detuning, being maximum on resonance ∆ = 0
and decreasing with |∆|.

In Figure 6.4, we show the results of delaying the local oscillator in order to remove the
influence of phase noise from our measurements. The measurements have been done in the
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Figure 6.3: Balanced homodyne signal of the MIM cavity reflection recorded with
an electronic spectrum analyzer. The bottom plot is the same measurement as the
top plot but recorded over a narrower span of frequencies. The blue trace is the
local oscillator (LO) shot noise, obtained by blocking the signal beam. The orange
trace is obtained when the laser is far from the cavity resonance, because the path
of the LO and signal have been matched, the measurement is not sensitive to
laser phase noise. The green trace is obtained by tuning the laser to the red side
of the resonance ∆ ≈ −0.5κ, the phase of signal is locked at 90° from the LO as
to measure the phase quadrature. The overall increase in background noise level
when the laser is on resonance is caused by the change in effective propagation
distance of the signal respect to the LO.

empty microcavity. First, we have measured the delay induced by the cavity on a 1.3MHz
phase modulation, which is shown in the top plot of Figure 6.4. In the bottom plots, we demon-
strate how the signal-to-noise ratio is improved by matching the propagation time of the probe
and LO while taking the cavity delay into account. This has been done by adding 2 meters of
fiber, equivalent to 9.7ns. The laser lock was adjusted to remove the largest amount of noise,
which happened at the detuning ∆ = −0.84κ. To finally confirm that the reduction is thanks
to the delay, we measure the delay at this detuning using a network analyzer, which is in good
agreement with the delay expected at this detuning according to the top plot.

In this manner, we have increased the signal-to-noise ratio of the motion of the mirrors by
almost two orders of magnitude. The obvious question is, can laser phase noise be removed
completely? In balanced homodyne detection, it is not possible. This is due to the quadrature
rotation phenomenon. Cavities not only delay phase noise, but also can remove it or convert it
into amplitude noise. First, consider that we are using the BHD to measure the phase quadra-
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Figure 6.4: The delay of the empty cavity and its effects on phase measurement.
Top plot: Delay induced on a 1.3MHz phase modulation upon reflection from
the cavity. The delay increases as the laser frequency get closer to resonance. The
linewidth of the optical resonance is κ = 2π · 18.3MHz. Bottom plots: Effect of
adding a delay to the local oscillator (LO) on the presence of phase noise in the
homodyne detector trace (BHD Sii), which is shown normalized to shot noise. In
the bottom left plot, the propagation length of the LO has been carefully matched
to the total signal beam when reflecting off-resonance. The off-resonant reflection
(orange trace) does not present fluctuations above shot noise (dashed blue trace).
When the laser locked at a detuning ∆ = −0.84κ, the phase sepctrum (green) noise
background increases, due to the delay of around 9.7ns induced by the cavity. In
the bottom right plot, we have added 2 meters of fiber (refractive index of 1.45)
to create a 9.7ns delay, the off-resonant noise (orange) increases by almost two
order of magnitude, while the noise in the close to near-resonant trace (green)
drops a similar amount, causing a dramatic increase of signal-to-noise ratio.
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ture. Any reduction of phase noise in the cavity path will be equivalent to an increase in the
LO beam. For example, take the laser noise at frequencies ≫ κ. The noise will not be present
in transmission because it is filtered by the limited bandwidth of the cavity. In the other hand,
the LO will retain all the noise of the laser. When both beams interfere, we will measure laser
phase noise no matter the delay between the paths. More generally, the scheme only works for
measuring the phase quadrature, for noise that is not filtered and ∆ , 0, we have contaminated
the amplitude quadrature with noise through the rotation.

We finish our discussion by mentioning that it might be possible to completely cancel phase
noise using a single-detector homodyne scheme4. Starting with adjusting the propagation time
of the LO to that of the signal through the cavity, the delay and power of the LO could be finely
adjusted as to project phase noise into amplitude in a manner that cancels the amplitude noise
caused by cavity rotation.

6.4 Thermal intermodulation noise
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Figure 6.5: Homodyne measurement of the cavity reflection. The phase of the
LO was locked in order to measure the phase quadrature. The cavity was in-
terrogated with a low-power Cq ≪ 1 beam detuned by −0.5κ. The central peak
corresponds to the high-Q mechanical mode. All the other peaks are not the re-
sult of single mechanical modes, but rather the beat signals of thermomechanical
motion of out-of-bandgap modes, what we refer to as thermal intermodulation
noise.

Thermal Intermodulation Noise (TIN) is the noise arising from quadratic transduction of
mechanical motion into cavity field fluctuations [80]. TIN is problematic because, as its name
indicates, it mixes the thermomechanical signal of various modes. TIN appears as a set of peaks
at Ωi ±Ωj for all i, j mechanical modes. Due to the large density of modes in phononic crystal

4The author found this idea in Guanhao Huang’s doctoral thesis[27].
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resonators, TIN ends up raising the overall noise floor of the signal.

To investigate when TIN appears, we will again work in the fast cavity regime. In this case,
the cavity field quickly adjusts to the detuning caused by mechanical motion, which is given by
the total membrane motion

∑
qi(t) and the coupling factor G:

∆(t) = ωl −ωc,0 −G
∑

qi(t). (6.6)

As done in the previous section, we use classical version of the non-linearized quantum Langevin
equation to find the intracavity photon number, but now keeping the second order terms:

nc ∝ 1− 2ν
1 + ν2 δν +

3ν2 − 1

(1 + ν2)2 (δν)2 (6.7)

where we have again expanded the detuning into ν + δν. The quadratic term will have conse-
quences for both the dynamics of the oscillator as well as the output fields of the cavity. The
force created by the quadratic fluctuations of the intracavity power is a sort of back-action. It
has been studied thoroughly in the work by [43]. We notice that at a detuning ν = ±1/

√
3, the

quadratic term disappears, this is referred to as “magic detuning” [80]. Note that only the in-
tracavity photon number is immune to quadratic fluctuations at the magic detuning, the phase
of the field will still depend on (δν)2 In contrast, on resonance δν = 0, the linear contribution
vanishes and the quadratic contribution is at its maximum. In a optomechanical system with a
singular mechanical mode, the quadratic back-action acts as an additional optical spring. How-
ever, in a multi-mechanical mode system, the quadratic term mixes the mechanical modes and
gives rise to TIN.

We observe TIN in our spectra of the output fields measured through homodyne detection,
one example is shown in Figure 6.5. We have not characterized TIN in depth because it is not
the main limiting factor of our experiment. Once we remove classical phase noise, the current
limiting factor, TIN will become the most significant obstacle. The adverse effects of TIN have
been successfully suppressed in the work [27]. Efficient TIN suppression is achieved by working
at the magic detuning and using a single-detector homodyne scheme[80]. The single-detector
homodyne (described in Appendix D) can be made insensitve to quadratic phase fluctuations
by adjusting the LO power.
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Chapter 7

Conclusions and outlook

In this work, we have presented the theory of cavity quantum optomechanics, including a
model for the detection of the cavity fields in the presence of laser phase noise. We have used
the theory to show the possibility of optomechanical squeezing at room-temperature.

Based on insights from both the theory of cavity optomechanics and the reality of building
quantum optics experiments, we have designed a compact, low-noise optical micro-cavity that
houses an ultra-coherent mechanical resonator. We have engineered planar mirrors with opti-
mized phononic patterns that reduce mirror motion at the frequencies of our resonator, which
has been experimentally checked.

The micro-cavity has been enabled by an innovative, yet simple, feedback controlled laser
ablation protocol. The fabrication process has been thoroughly described and characterized,
demonstrating perfect yield and wide control of the fabricated feature’s geometry.

The optical, mechanical and optomechanical properties of our membrane-in-the-middle
system have been characterized. We have developed measurement protocols that address the
problems of characterizing a highly interacting optomechanical system. We have shown how,
thanks to the semi-rigid approach to the cavity, the optical loss rate induced by the membrane
is small compared to the rate at which light exits through the measurement channel. We have
seen how the system has the potential to be in the quantum dominated regime at low input
powers.

We have shown how quantum regime operation is prevented by technical problems. We
document how the membrane can break due to radiation pressure, which is inconvenient, but
does not prevent reaching a quantum cooperativity above 1. We describe and discuss problems
in locking the laser to the cavity. We study the challenges of laser phase noise, how it effectively
heats the resonator and some approaches to reduce its effects on detection. We briefly touch on
the subject of thermal intermodulation noise, which we predict to be the ultimate obstacle to
the manifestation of quantum effects in our system.

7.1 Next steps

The main task of this work has been the engineering of the cavity, which has left a limited
amount of time to explore the physics of the system.1 A lot of possible solutions to the exper-

1The first observation of the mechanical signal in the cavity was achieved around November 2023, with the mem-
brane rupturing for the first time in February 2024. The proper cavity geometry ensuring low optical losses was first
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imental challenges have been left on the table, as well as the experiments that can be realized
after they are solved. Following are some of the approaches to solve the current challenges:

• A filter cavity. Classical noise can be removed by filtering the laser through a narrow
linewidth cavity. Steps towards the implementation of such cavity have been taken in
two directions: a free-space monolithic cavity in the lines of the one described in [27, 81]
and fiber loop based cavity. The cavity should have a linewidth < 100kHz, which can be
achieved using commercial super-mirrors and cavity lengths in the 10s of cm. We predict
two challenges with this approach, we must filter a large amount of power for both the
probe and local oscillator (upwards of 5mW) and we must keep the filter cavity resonant
to the laser while the laser tracks the experiment’s cavity frequency.

• A phase noise-eater. Phase noise can be removed through precise and fast feedback based
on real time measurement in a set-up like the one showed in Figure 5.8 [51]. This is an
easier solution compared to the filter cavity, but it requires a large delay in order to be
efficient for measurement of 1MHz noise. Additionally, it is limited by fiber noise. One
could circumvent this by creating a free-space delay line, some recent free-space folded
delay designs [82] can allow for the 500ns required to sense 1MHz optimally.

• Removal of phase noise in post-processing. We have observed correlations between time-
traces of the cavity signal and an independent time-trace of phase noise. This could be
used to remove the effect of phase noise on the measured time trace, but not the heating
associated with it.

• Different laser source. The laser used was chosen due to its wide tunability, needed due
to the large free-spectral range of our micro-cavity. Due to the fact that the bottom mirror
is made of silicon, we must use a wavelength ? 1100nm, lower wavelengths are strongly
absorbed by silicon. One could imagine using a wide-tunable but noise-less at our fre-
quency range, like a Titanium-Sapphire laser, and use an optical parametric oscillator to
increase the wavelength from around 775nm to around 1550nm.

• Problems with locking. A feedback cooling system to lower the excitation of membrane
modes below the bandgap could be beneficial for improving lock stability, as reported in
[78].

• Transmission measurement set-up. We have presented the set-up that has been more
practical for characterizing the system, which collects the reflection of the cavity back to
fiber. This comes at a cost of a collection efficiency η > 0.5. This completely removes
squeezing in the output beam through mixing with vacuum. The optimal set-up would
measure the transmission of the cavity directly in the homodyne detector, this implies
pumping the system from the more reflective mirror (the silicon mirror).

• Lower reflectivity of mirrors. To optimize the cavity for mechanical motion sensing, it
could be preferable to lower the finesse in a way that does not introduce losses. This could
be done with a laser farther away from the mirrors design wavelengths, or by reducing
the reflectivity of the mirrors through etching of a few layers of the coating[83].

Once these solutions hopefully solve the remaining technical problems of the set-up, we can ob-
serve phenomena that manifests in the unresolved sideband regime. The following experiments
could be realized, roughly ordered from more approachable to less:

• Conditional state preparation of the mechanics close to the ground state[78, 84–86]. In-
stead of physically cooling the mechanical oscillator using a feedback force, if our mea-
surement precision is below the zero-point motion while “averaging” for a duration smaller

assembled at the start of July 2024, after a patient exploration of spacer sizes and mounting geometries. The membrane
broke again during third week of August 2024.
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than the thermal dissipation rate, we can prepare a thermal state with occupation below
unity conditioned to our measurement record.

• Feedback cooling close to the ground state. Optimally estimating the position of the me-
chanical mode and using a second source of light to damp the oscillator [26, 61]. Before
reaching the ground state, it could allow the measurement of motional sideband asym-
metry [28]

• Coherent feedback cooling. Coherent feedback cooling is an all optical, measurement-less
method of cooling protocol. By projecting the phase quadrature of the out beam, which
contains position information, to the amplitude quadrature, we can generate an optical
force proportional to position. By delaying the beam and feeding it back to the cavity, a
damping force is generated that can cool the system to the ground-state [87].

• Optomechanical squeezing is present as long as Cq ? 1, the challenge is reducing the
losses a long the path the cavity output field suffers before reaching the detector [78, 88].
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Appendix A

The Markovian quantum Langevin
equation

I will very briefly sketch the derivation of the Markovian quantum Langevin equation in order
to highlight the assumptions and approximations used.

The mechanical resonator and its environment are modeled through the following Hamil-
tonian:

Ĥ =
1

2m
p̂2︸︷︷︸

Ĥsys

+
1
2
kq̂2 +

∑
j

1
2mj

p̂2
j +

1
2
kj (q̂j − q̂)2

︸                                    ︷︷                                    ︸
Ĥenv+Ĥsys−env

. (A.1)

A possibly infinite number of masses mj are connected through springs of constant kj to our
oscillator of interest. The evolution of an operator Ô(t) in the Heisenberg picture can be found
using the Heisenberg equation:

˙̂O(t) =
1
iℏ

[
Ô(t), Ĥ(t)

]
= (A.2)

=
1
iℏ

[
Ô, Ĥsys

]
− 1

2iℏ

∑
j

kj
{[
Ô, q̂

]
, q̂j − q̂

}
, (A.3)

where
{
Â, B̂

}
= ÂB̂ + B̂Â is the anti-commutator. We would like to remove any dependence

on bath properties and operators, namely kj and q̂j . To achieve that, we start by finding the
differential equations governing q̂ and q̂j using the previous Heisenberg equation. Second, a
formal solution for q̂j is written so that we can arrive at an integral-differential equation con-
taining exclusively q̂ terms. The resulting expression is found by ignoring transients caused by
the environment’s initial conditions as well as considering a continuum of environment modes
(kj → k(Ω),

∑
j . . .→

∫
ρ(Ω) . . .dΩ):

m ¨̂q+m
∫ t

−∞
Γ (t − t′) ˙̂q(t)dt′ + (k + kenv)q̂ = F̂(t). (A.4)

Γ (Ω) = F [γ(t)] (Ω) =
k(Ω)ρ(Ω)

4m
(A.5)
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kenv =
∫ ∞

0
ρ(Ω)k(Ω)dΩ (A.6)

F̂(t) =
∑
j

kj q̂
h
j (t) where ¨̂qhj = −kj q̂hj (A.7)

If the environment oscillators are thermalized at temperature T , F̂ fulfills the quantum fluctuation-
dissipation theorem:

SF̂F̂(ω) = 2mΓ (ω)ℏω(n̄(ω) + 1) (A.8)

SF̂F̂(−ω) = 2mΓ (ω)ℏωn̄(ω), (A.9)

where n̄(ω) is the previously introduced Bose-Einstein distribution:

n̄(ω) =
1

e
ℏω
kBT − 1

. (A.10)

From now on, we will absorb kenv into k. We can update the Heisenberg equation with Equa-
tion A.4:

˙̂O(t) =
1
iℏ

[
Ô, Ĥsys

]
− 1

iℏ
[
Ô, q̂

]
F̂(t)− m

2iℏ

{[
Ô, q̂

]
,

∫ t

−∞
Γ (t − t′) ˙̂q(t)dt′

}
. (A.11)

To get rid of the kj and q̂j dependencies we must perform our first approximation, the Markov
approximation. The Markov approximation considers Γ (t) = Γmδ(t), which is equivalent to as-
suming that the environment is a memory-less bath. Equation A.4 becomes the familiar damped
harmonic oscillator:

m ¨̂q(t) +mΓm
˙̂q(t) + kq̂(t) = F̂(t), (A.12)

and the Langevin equation for a general operator becomes:

˙̂O(t) =
1
iℏ

[
Ô, Ĥsys

]
− 1

iℏ
[
Ô, q̂

]
F̂(t)− mΓm

2iℏ
{[
Ô, q̂

]
, ˙̂q(t)

}
. (A.13)

It is convenient to express the Langevin equation in terms of the dimension-less quadrature
operators. A momentum input operator can be written as:

P̂in(t) =
i
√

2

(
b̂†in + b̂in

)
=
xz.p.

ℏ
√
Γm
F̂(t). (A.14)

P̂in(t) has units of
√

Hz because it is an input operator and describes an input rate of momentum.
Now we can write the Langevin equation as:

˙̂O(t) =
1
iℏ

[
Ô, Ĥsys

]
+ i

√
2Γm

[
Ô, Q̂

]
P̂in(t) +

Γm

2iΩm

{[
Ô, Q̂

]
, ˙̂Q(t)

}
. (A.15)



Appendix B

Separation of fields into average and
fluctuation terms

Through out this work we have written the annihilation operator â of a given field as a sum of
its mean value α = |α|eiθ ∈ C and a fluctuation term δâ:

â = α + δâ. (B.1)

We attribute all quantum behavior to the fluctuation term. We can also apply the same con-
cept to the amplitude and phase quadratures of the field, but some care must be taken when
obtaining the fluctuations of those quadratures δX̂ and δŶ from the fluctuations δâ and δâ†.
We associate amplitude fluctuations with those that change the intensity of the field. This is
the only way, as the mean field α is the only reference available. In an experiment, when we
measure using a homodyne detector, we associate measuring δX̂ when the local oscillator is
interfering constructively (or destructively for −δX̂). The phase quadrature fluctuations δŶ are
”perpendicular” to δX̂. We measure them by interfering with a local oscillator at a node of the
interference pattern. In order to be consistent with how we measure δX and δY , we must use
the following relations [89]:

δX̂ =
1
√

2

(
eiθδâ† + e−iθδâ

)
, (B.2a)

δŶ =
i
√

2

(
eiθδâ† − e−iθδâ

)
, (B.2b)

Re

Im

δâ

δX̂δŶ

α
θ

Figure B.1: Representation of the field fluctuations in phase-space
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and the ladder operators can be written as:

δâ =
eiθ
√

2

(
δX̂ + iδŶ

)
, (B.3)

δâ† =
e−iθ
√

2

(
δX̂ − iδŶ

)
. (B.4)

An arbitrary quadrature δX̂ϕ = δX̂ cosϕ + δŶ sinϕ can also be written as:

δX̂ϕ =
1
√

2

[
ei(θ+ϕ)δâ† + e−i(θ+ϕ)δâ

]
. (B.5)



Appendix C

Power Spectral Density

C.1 Definition and conventions

I take the following definition of the cross-power spectral density (cross-PSD) of Heisenberg
picture operators Â(t) and B̂(t)[33]:

SÂB̂(ω) = lim
τ→∞

1
τ

〈[
Âτ (ω)

]†
B̂τ (ω)

〉
=

∫ ∞
−∞

eiωτ
〈[
Â(t + τ)

]†
B̂(t)

〉
t=0

dτ =
∫ ∞
−∞

〈[
Â(−ω)

]†
B̂(ω′)

〉 dω′

2π
(C.1)

Where I use the following definition for the windowed Fourier transform:

Âτ (ω) = Fτ
{
Â(t)

}
(ω) =

∫ τ/2

−τ/2
eiωtÂ(t)dt . (C.2)

I take the usual Fourier transform definition:

Â(ω) = F
{
Â(t)

}
(ω) =

∫ ∞
−∞

eiωtÂ(t)dt . (C.3)

Implying F
{

dnÂ(t)
dtn

}
(ω) = (−iω)nF

{
Â(t)

}
(ω). I use the following notation for the Fourier trans-

form of the Hermitian conjugate of an operator:

Â†(ω) = F
{[
Â(t)

]†}
(ω). (C.4)

Notice that given the definition of the Fourier transform, the following condition applies to any
operator: [

Â(ω)
]†

= Â†(−ω), (C.5)

which allows one to write Equation C.1 as:

SÂB̂(ω) =
∫ ∞
−∞

〈
Â†(ω)B̂(ω′)

〉 dω′

2π
(C.6)

Hermitian operators in particular fulfill:[
X̂(ω)

]†
= X̂(−ω) where X̂† = X̂. (C.7)
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For convenience:
SÔ(ω) := SÔÔ(ω) (C.8)

. The symmetrized PSD is defined as follows:

S̄ÂB̂(ω) :=
SÂB̂(ω) + SÂB̂(−ω)

2
(C.9)

C.2 Useful results

Here is a list of some results that might seem trivial to the reader but do not appear so obvious
to the author:

• The second moment of an operator Ô can be found from its cross-PSD or symmetrized
cross-PSD: 〈

Ô2
〉

=
1

2π

∫ ∞
−∞
SÔ†Ô(ω)dω =

1
π

∫ ∞
0
S̄Ô†Ô(ω)dω (C.10)

To arrive at this expression, I used Equation C.1 and the fact that the Dirac delta function
is given by δ(a− b) = 1

2π

∫∞
−∞ eix(a−b) dx.

• As a consequence of the previous result, if X̂ = X̂† is a Hermitian operator, then the second
moment is given from its PSD or symmetrized PSD:〈

X̂2
〉

=
1

2π

∫ ∞
−∞
SX̂X̂(ω)dω =

1
π

∫ ∞
0
S̄X̂X̂(ω)dω where X̂† = X̂. (C.11)

• From the definition in Equation C.1 I find:

SÂB̂ = S∗B̂Â (C.12)

• The PSD of an operator Ô that in Fourier space is given by: Ô(ω) = χÂ(ω)Â(ω)+χB̂(ω)B̂(ω),
with χÂ(ω),χB̂(ω) ∈ C, can be found from the definition in Equation C.1:

SÔÔ(ω) =
∣∣∣χÂ(ω)

∣∣∣2SÂÂ(ω) +
∣∣∣χB̂(ω)

∣∣∣2SB̂B̂(ω) + 2Re
{
χ∗Â(ω)χB̂(ω)SÂB̂

}
, (C.13)

where I used Equation C.12.

• If Ô(ω) = χ(ω)Â(ω), with χ(ω) ∈ C, then:[
Ô(ω)

]†
=

[
χ(ω)Â(ω)

]†
= χ∗(ω)Â†(−ω) (C.14)

and:
Ô†(ω) = χ∗(−ω)A†(ω). (C.15)

Notice that Equation C.5 still holds.



Appendix D

Single Detector Homodyne

Single-detector homodyne (SHD) is the simplest phase-referenced detection. It is seldom used
due to the advantages of balanced homodyne detection, which will be presented in the next
section. However, SHD has found a niche in cavity optomechanics because it can be made in-
sensitive to quadratic frequency noise [80]. SHD has very recently allowed the observation of
optomechanical squeezing at room temperature [27], as well as mechanical sideband asymme-
try [28].

SHD consists in mixing our signal field, the one we want to detect, with a local oscillator
(LO) through a highly asymmetrical beamsplitter, that is, larger reflectivty than transmitivity
or vice-versa. The resulting field is measured in a photodetector. The highly asymmetrical
beamsplitter is needed to ensure minimal losses in our signal beam, which can easily kill any
squeezing in the fluctuations. This makes it so that a large amount of light is needed in the
other port in order to have a large enough LO. Let us consider that we use a beamsplitter with
ratio ϵ so that the beam reaching the photodiode is:

â =
√
ϵâs + i

√
1− ϵâLO, (D.1)
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and the photocurrent is:

î =|â|2

=ϵ|αs |2 + (1− ϵ)|αLO|2 + 2
√
ϵ(1− ϵ)|αs ||αLO|sin(θLO −θs)︸                                                                   ︷︷                                                                   ︸
iDC

+

+
√

2ϵ|αs |δX̂s +
√

2(1− ϵ)|αLO|δX̂LO︸                                      ︷︷                                      ︸
Direct detection/amplitude fluctuations

+

+
√

2ϵ(1− ϵ)|αLO|
(
δX̂s sin(θLO −θs) + δŶs cos(θLO −θs)

)
︸                                                                  ︷︷                                                                  ︸

LO projects signal quadratures

+

+
√

2ϵ(1− ϵ)|αs |
(
δX̂LO sin(θs −θLO) + δŶLO cos(θs −θLO)

)
︸                                                                     ︷︷                                                                     ︸

Signal projects LO quadratures

+

+ ϵ|δâs |2 + (1− ϵ)|δâLO|2 + i
√
ϵ(1− ϵ)

(
δâ†sδâLO − δâ†LOδâs

)
︸                                                                   ︷︷                                                                   ︸

Second order

(D.2)

SHD measures the signal quadrature at an angle that is not equal to the phase between the
signal and LO because it has elements of both direct and phase referenced detection. We can
find what quadrature SHD is measuring by re-writing the expression above in the following
manner:

δî = î − iDC =
√

2
∣∣∣β∣∣∣δX̂θSHD

s +
√

2
∣∣∣β′∣∣∣δX̂θ′SHD

LO , (D.3)

which is valid in the linearized approximation. The angles are given by the following expres-
sions:

tanθSHD =

√
ϵ(1− ϵ)|αLO|cos(θs −θLO)

ϵ|αs |+
√
ϵ(1− ϵ)|αLO|sin(θs −θLO)

(D.4)

tanθ′SHD =
−
√
ϵ(1− ϵ)|αs |cos(θLO −θs)

(1− ϵ)|αLO| −
√
ϵ(1− ϵ)|αs |sin(θLO −θs)

, (D.5)

(D.6)

and the amplitudes given by:

β =

√
ϵ2|αs |2 + ϵ(1− ϵ)|αLO|2 + 2

√
ϵ3(1− ϵ)|αs ||αLO|sin(θs −θLO) (D.7)

β′ =

√
(1− ϵ)2|αLO|2 + ϵ(1− ϵ)|αs |2 + 2

√
ϵ(1− ϵ)3|αs ||αLO|sin(θLO −θs). (D.8)

This formulation makes it clear that the quadrature angle measured in SHD is not given by
the phase between signal and LO. However, in the limit (1− ϵ)|αLO| ≫ ϵ|αs |: θSHD→ π

2 +θLO −
θs, θ′SHD → 0 and

∣∣∣β∣∣∣, ∣∣∣β′∣∣∣ → |αLO|. Thus, we recover the usual homodyne limit, where the
photocurrent fluctuations are given by the shot-noise of the LO and we of a quadrature of the
signal given by the relative phase between the two. We will not do such approximation, as the
phase noise of the laser is usually well above the quantum fluctuations.
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Experiment

Laser
al aLO'
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LO cond.

aprobe as |r|aLO+|t|as 

Figure D.1: General scheme for single-detector homodyne detection. Both the
local oscillator and probe beams are sourced from the same laser.

We are now going to investigate how laser phase noise can affect our SHD measurement.
In a majority of experiments, including us, phase referenced detection is implemented experi-
mentally by splitting one laser into two beams, the probe and the LO, like shown in Figure D.1.
The probe feeds an experiment that outputs the signal. If the laser has classical noise, there
will be classical correlations between LO and signal. The fact that the signal of SHD is linear
on quadrature fluctuations means that we can arbitrarily split the fluctuations into different
contributions and study the effect. We can then ignore quantum fluctations and study the effect
of classical phase noise originating in the laser. First, we consider our laser as a coherent beam
with additional phase fluctuations δφ:

âl = αle
iδφ + δâvac

l ≃ αl + iαlδφ+ δâvac
l , (D.9)

where δâvac
l are the fluctuation associated with a coherent beam (which are the same for vac-

uum). The laser is split into a fraction ξ that becomes the probe, and another 1− ξ which acts
as a precursor to the LO.

âprobe = ξαl + iξαlδφ+ ˆ. . . = αprobe + iαprobeδφ+ ˆ. . . (D.10)

âLO′ = (1− ξ)αl + i(1− ξ)αlδφ+ ˆ. . . = αLO′ + iαLO′δφ+ ˆ. . . (D.11)

For illustration purposes, let us first consider that both the experiment and the LO path are
free-space and have the same length, except for a small adjustable element to adjust the phase
of the LO so that âLO = eiθ âLO′ and âs = âprobe. In order to use Equation D.3, we find the
quadratures of both beams:

δX̂s = ˆ. . . δŶs =
√

2|αs |δφ+ ˆ. . . (D.12)

δX̂LO = ˆ. . . δŶLO =
√

2|αLO|δφ+ ˆ. . . (D.13)

When we input these expressions into Equation D.3, we will find that contributions propor-
tional to δφ vanish. Mathematically, this happens because |αs |β sinθSHD = −|αLO|β′ sinθ′SHD.
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Appendix E

The vacuum set-up

E.1 Overall description and operation

The vacuum set-up used in this work was implemented from scratch. Through a lot of trial and
error, due to my null starting experience with vacuum, I converged into the set-up shown in
Figure E.1 and described in this appendix.

The chamber that houses the experiment is a 6-way cube with DN63CF flanges (LewVac
FL-CUBE63CF)1. Two vacuum pumps are used a roughing pump (Edwards T-Station 85), used
to evacuate the majority of the air, and an ion pump (GammaVacuum TiTan 25S, 20L/s)2, used
to maintain the chamber at pressure of around 5 × 10−8 mbar. The access of each pump to the
cavity is controlled by two valves. All the vacuum system uses CF flanges, except a KF flange
where the roughing pump is connected. The KF flange is chosen due to its quick release and
re-usability of its rubber gaskets. The KF flange, which is not rated for UHV, is isolated from the
system by a CF valve through an adapter flange. The roughing pump chains a membrane pump
that brings the pressure of the chamber from atmospheric pressure down to 0.5 mbar with a
turbo pump that further reduces it to 10−7 mbar. The mechanical nature of the turbo pump
induces vibrations on the system and cannot be left on while doing experiments. Instead, we
use the ion pump (G to further reduce and keep the vacuum. We need two pumps because ion
pumps can only operate at already low pressures (around and below to 10−5 mbar), this is due
to the working principle of ion pumps. Because they work by ionizing the air and depositing
the ions in a cathode, at high air pressures an arc is formed, shorting the anode and cathode.

The procedure of air evacuation usually starts with the ion pump valve closed, with the
ion pump keeping a vacuum in the space between itself and the valve. The ion pump is kept
running continuously because exposure to the atmosphere lowers its performance. In this con-
figuration, the steps to pump the system down are:

1. The roughing pump is connected to the vacuum system through a KF flange.

2. The roughing pump valve is opened.

1Two elements with CF flanges (ConFlat) are joint by screwing them together with a copper gasket in-between. The
flange (i.e the hole that connects the components) has a knife edge in the rim that “bites” into the gasket, making a seal
that can hold a vacuum of 10−13 mbar (in a best-case scenario).

2We started with a smaller ion pump (GammaVacuum TiTan 5S, 5L/s) that stopped working properly after a few
months of use. No baking of the system helped. Due to the small increase in price for an ion pump with increased
pumping rate, I would recommend to go for the largest ion pump that is able to fit in a set-up
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Rough pump valve

KF port for 
rough pump

Pressure
gage

Ion pump

Ion pump isolation valve

Chamber

Figure E.1: Top view of the vacuum chamber.
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Figure E.2: Schematic rendering of the cavity holder The holder is composed of
two components, the main holder, and the carrier, both made of aluminium at our
department’s workshop. The main holder is screwed to the bottom flange of the
vacuum chamber, while carrier attaches to the main holder. This set-up allows
us to assemble the cavity on the carrier without keeping the vacuum chamber
exposed to the atmosphere. A 19mm diameter dielectric mirror is placed in the
notch of the main holder, this is the tilted mirror that allows collection of trans-
mitted light when the system is pumped from above (see Figure 3.10).

3. The roughing pump is turned on, the pressure is monitored with a pressure gage, after a
couple of hours, the system reaches pressures in the lows 10−7 mbar.

4. At this point, the ion pump valve is opened.

5. As soon as possible, the roughing pump valve is closed.

6. The roughing pump is disconnected from the system by releasing the KF flange.

7. Over the next hours, the system reaches pressure just below 10−7 mbar. After a couple of
days, the system’s pressure plateaus to 5× 10−8 mbar.

E.2 The cavity holder

A schematic view of the holder used in the vacuum chamber is shown in Figure E.2. Before
placing the holder in the vacuum chamber, it was cleaned by blowing it with pressured nitrogen
and an acetone ultra-sonic bath.
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Appendix F

Modulation depth calibration

Laser SAEOM

AOM

ωm

ωs

Figure F.1: The depth of a phase modulation created by a phase modulator, EOM
in the figure, can be measured by interference with a a beam with shifted carrier
frequency. The shift is achieved through the acousto-optical modulator (AOM).
The ratio of the height of the peaks at ωs and ωs ±ωm in the spectrum recorded
by the spectrum analyzer (SA) canbe used to determine the modulation depth in
radians.

Phase modulators add a voltage controlled phase to a beam. In the RF band (above tens of
kilohertz), this is usually done with an Electro-Optical Modulator (EOM). EOMs exploit the
electro-optical effect, the change of refractive index caused by applying voltage to a material.
EOMs work from DC to GHz with the transduction factor between voltage and phase chang-
ing with frequency. The transduction factor is usually expressed by manufacturers as Vπ, the
voltage needed to induce a πrad phase. A voltage signal of frequency ωm with amplitude Va:

v(t) = Va(ωm) · sinωmt (F.1)

is applied to the EOM, which generates a phase modulation:

φ(t) = β(ωm) · sinωmt, (F.2)

where:

β(ωm) = π
Va(ωm)
Vπ(ωm)

. (F.3)

is the modulation depth.
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The modulation depth can be determined through various methods. If available, an opti-
cal cavity with a linewidth well below the modulation frequency can be used to measure the
relative power between the carrier and the sidebands at ±ωm created by the modulation. If
one wants to determine β in the 1MHz range, we would need a roughly 10cm long cavity with
finesse over 104, which is feasible experimentally but was not available at the time of this work.
Instead, we followed a method similar to the one presented in [90]. Instead of a cavity, we
need an acousto-optical modulator (AOM), which shifts the carrier frequency by usually tens
of MHz. By interfering a phase modulated beam with a frequency shifted beam in the way
shown in Figure F.1, the modulation depth can be extracted.
Let us go over the procedure, the laser beam is split into two paths, in one path, the phase
modulator adds a sinusoidal phase to the beam such that the field after the modulator is:

Ep(t) ∝ e−iωl t+iβ sinωt . (F.4)

in the other path, an acousto-optical modulator shifts the carrier frequency by a certain amount
ωs:

Es(t) ∝ e−i(ωl+ωs)t . (F.5)

The paths are joined again at a beam-splitter, the ratio is such that the power received from
each arm is Pp and Ps. The joint beam is measured at a photodector, recording the power given
by:

PD (t) =
∣∣∣Ep(t) +Es(t)

∣∣∣2 = P 2
p + P 2

s + 2
√
PpPs

∞∑
n=−∞

Jn(β)cos(ωs +nωm)t, (F.6)

where we have used the Jacobi-Anger expansion [91, 92], which splits the modulation into an
infinite sum of side-bands weighted by Jn(β), which is the Bessel function of the first kind of
order n. The output of the detector is sent to a spectrum analyzer, which measure the power
spectral density (PSD) of PD (t). The spectrum will exhibit peaks at the side-bands ωs + nωm

with peak-heights SPDPD (ωs + nωm) = 4PpPs
∣∣∣Jn(β)

∣∣∣2. Assuming that the photodetector has the
same frequency response at ωs and ωs ±ωm, we can extract β from the ratio of the peaks:

SPDPD (ωs ±ωm)
SPDPD (ωs)

=

∣∣∣J1(β)
∣∣∣2∣∣∣J0(β)
∣∣∣2 . (F.7)

This procedure was followed in order to measure Vπ at 1MHz of a Lithium Niobate fiber-
coupled EOM (iXblue MPZ-LN-10). The 1550nm beam coming from our laser was split using
a fiber splitter. At one output, the beam goes through the EOM, which was driven with sine-
waves of various amplitudes (using a Keysight 33512b signal generator). In the other path,
an AOM shifts the laser frequency by 40MHz (a G&H Fiber-Q AOM fed by a Windfreak Tech-
nologies SynthNV signal generator). After recombining in a second fiber splitter, the signal
was measured with a fast photodiode (Thorlabs PDA05CF2, band-width 150MHz) and the PSD
recorded in a spectrum analyzer (Siglent SSA3201X). Vπ is extracted from a linear fit between
modulation depth and amplitude (shown in Figure F.2). obtaining the following value:

Vπ(1MHz) = 5.22± 0.018V (F.8)



123

0.0 0.2 0.4 0.6 0.8 1.0
Va (V)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

β
(r
ad

)

ωs −ωmod

ωs +ωmod

Fit: Vπ = 5.22V

Figure F.2: In order to determine its Vπ, the phase modulator is driven with
sine-waves of different amplitudes Va while recording the modulation depth β.
A linear fit allows us to determine Vπ by extrapolating the amplitude needed to
obtain β = π.
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